Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Hepatology ; 78(6): 1742-1754, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789652

RESUMO

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy, with increasing incidence worldwide and limited therapeutic options. Aberrant protein glycosylation is a hallmark of cancer. Here, we thoroughly investigated the possible involvement of fucosylation in cholangiocarcinogenesis. APPROACH AND RESULTS: We discovered that the levels of global fucosylation and members of the fucosylation pathway are ubiquitously upregulated in human iCCA tissues compared to nontumorous surrounding livers and normal biliary cells. In addition, total fucosylation levels correlate with poor patients' prognosis. Furthermore, fucosylation inhibition following 6-alkynylfucose (6AF) administration triggered a dose-dependent decrease in the proliferation and migration of iCCA cell lines. Notably, adding fucose to the cell medium annulled these effects. At the molecular level, 6AF administration or small interfering RNA-mediated silencing of GDP-L-fucose synthetase (FX) and the GDP-fucose transmembrane transporter (SLC35C1), both pivotal players of cellular fucosylation, decreased NOTCH activity, NOTCH1/Jagged1 interaction, NOTCH receptors, and related target genes in iCCA cell lines. In the same cells, EGFR, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and Bcl-xL protein levels diminished, whereas IκBα (a critical cellular NF-κB inhibitor) increased after FX/SLC35C1 knockdown or 6AF administration. In the chick chorioallantoic membrane assay, 6AF treatment profoundly suppresses the growth of iCCA cells. CONCLUSIONS: Elevated global fucosylation characterizes human iCCA, contributing to cell growth and migration through the upregulation of the NOTCH and EGFR/NF-κB pathways. Thus, aberrant fucosylation is a novel pathogenetic player and a potential therapeutic target for human iCCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , NF-kappa B/metabolismo , Glicosilação , Prognóstico , Fucose/metabolismo , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Receptores ErbB/metabolismo
2.
Hepatology ; 77(6): 1929-1942, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35921500

RESUMO

BACKGROUND AND AIMS: Gain-of-function (GOF) mutations of CTNNB1 and loss-of-function (LOF) mutations of AXIN1 are recurrent genetic alterations in hepatocellular carcinoma (HCC). We aim to investigate the functional contribution of Hippo/YAP/TAZ in GOF CTNNB1 or LOF AXIN1 mutant HCCs. APPROACH AND RESULTS: The requirement of YAP/TAZ in c-Met/ß-Catenin and c-Met/sgAxin1-driven HCC was analyzed using conditional Yap , Taz , and Yap;Taz knockout (KO) mice. Mechanisms of AXIN1 in regulating YAP/TAZ were investigated using AXIN1 mutated HCC cells. Hepatocyte-specific inducible TTR-CreER T2KO system was applied to evaluate the role of Yap;Taz during tumor progression. Cabozantinib and G007-LK combinational treatment were tested in vitro and in vivo . Nuclear YAP/TAZ was strongly induced in c-Met/sgAxin1 mouse HCC cells. Activation of Hippo via overexpression of Lats2 or concomitant deletion of Yap and Taz significantly inhibited c-Met/sgAxin1 driven HCC development, whereas the same approaches had mild effects in c-Met/ß-Catenin HCCs. YAP is the major Hippo effector in c-Met/ß-Catenin HCCs, and both YAP and TAZ are required for c-Met/sgAxin1-dependent hepatocarcinogenesis. Mechanistically, AXIN1 binds to YAP/TAZ in human HCC cells and regulates YAP/TAZ stability. Genetic deletion of YAP/TAZ suppresses already formed c-Met/sgAxin1 liver tumors, supporting the requirement of YAP/TAZ during tumor progression. Importantly, tankyrase inhibitor G007-LK, which targets Hippo and Wnt pathways, synergizes with cabozantinib, a c-MET inhibitor, leading to tumor regression in the c-Met/sgAxin1 HCC model. CONCLUSIONS: Our studies demonstrate that YAP/TAZ are major signaling molecules downstream of LOF AXIN1 mutant HCCs, and targeting YAP/TAZ is an effective treatment against AXIN1 mutant human HCCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , beta Catenina/genética , Carcinogênese/genética , Mutação , Via de Sinalização Wnt/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína Axina/genética
3.
Gastroenterology ; 163(2): 481-494, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35489428

RESUMO

BACKGROUND & AIMS: YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/ß-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and ß-Catenin cascades in iCCA. METHODS: Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, ß-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine ß-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or ß-Catenin. Immunostaining of total and nonphosphorylated/activated ß-Catenin staining was performed in mouse and human iCCAs. RESULTS: We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, ß-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by ß-Catenin. Importantly, activated/nonphosphorylated ß-Catenin was detected in more than 80% of human iCCAs. CONCLUSION: YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with ß-Catenin. ß-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and ß-Catenin pathways in cholangiocarcinogenesis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas de Sinalização YAP , beta Catenina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Carcinogênese , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Small ; 19(50): e2304406, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37616512

RESUMO

Defect-rich carbon materials are considered as one of the most promising anodes for potassium-ion batteries due to their enormous adsorption sites of K+ , while the realization of both rate capability and cycling stability is still greatly limited by unstable electrochemical kinetics and inevitable structure degradation. Herein, an Fe3+ -induced hydrothermal-pyrolysis strategy is reported to construct well-tailored hybrid carbon nanotubes network architecture (PP-CNT), in which the short-range graphitic nanodomains are in-situ localized in the pea pod shape hypocrystalline carbon. The N,O codoped hypocrystalline carbon region contributes to abundant defect sites for potassium ion storage, ensuring high reversible capacity. Meanwhile, the short-range graphitic nanodomains with expanded interlayer spacing facilitate stable K+ migration and fast electron transfer. Furthermore, the finite element analysis confirms the volume expansion caused by K+ intercalation can be availably buffered due to the multidirection stress release effect of the unique porous pea pod shape, endowing carbon nanotubes with superior structural integrity. Consequently, the PP-CNT anode exhibits superior potassium-storage performance, including high reversible capacity, exceptional rate capability, and ultralong cycling stability. This work opens a new avenue for the fabrication of advanced carbon materials for achieving durable and fast potassium storage.

5.
Nat Mater ; 21(8): 917-923, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835820

RESUMO

In-memory computing provides an opportunity to meet the growing demands of large data-driven applications such as machine learning, by colocating logic operations and data storage. Despite being regarded as the ultimate solution for high-density integration and low-power manipulation, the use of spin or electric dipole at the single-molecule level to realize in-memory logic functions has yet to be realized at room temperature, due to their random orientation. Here, we demonstrate logic-in-memory operations, based on single electric dipole flipping in a two-terminal single-metallofullerene (Sc2C2@Cs(hept)-C88) device at room temperature. By applying a low voltage of ±0.8 V to the single-metallofullerene junction, we found that the digital information recorded among the different dipole states could be reversibly encoded in situ and stored. As a consequence, 14 types of Boolean logic operation were shown from a single-metallofullerene device. Density functional theory calculations reveal that the non-volatile memory behaviour comes from dipole reorientation of the [Sc2C2] group in the fullerene cage. This proof-of-concept represents a major step towards room-temperature electrically manipulated, low-power, two-terminal in-memory logic devices and a direction for in-memory computing using nanoelectronic devices.

6.
Hepatology ; 76(4): 951-966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35076948

RESUMO

BACKGROUND AND AIMS: Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS: The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS: This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ácido Graxo Sintase Tipo I , Neoplasias Hepáticas , Anilidas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mamíferos/metabolismo , Camundongos , Monoéster Fosfórico Hidrolases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridinas , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR , Tensinas
7.
Pharm Res ; 40(4): 909-915, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36198923

RESUMO

Small extracellular vesicles (sEVs, "exosomes") in milk have attracted considerable attention for use in delivering therapeutics to diseased tissues because of the following qualities. The production of milk sEVs is scalable, e.g., more than 1021 sEVs may be obtained annually from a single cow. Milk EVs protect their cargo against degradation in the gastrointestinal tract and during industrial processing. Milk sEVs and their cargo are absorbed following oral administration and they cross barriers such as intestinal mucosa, placenta and the blood-brain barrier in humans, pigs, and mice. Milk sEVs do no alter variables of liver and kidney function, or hematology, and do not elicit immune responses in humans, rats, and mice. Protocols are available for loading milk sEVs with therapeutic cargo, and a cell line is available for assessing effects of milk sEV modifications on drug delivery. Future research will need to assess and optimize sEV shelf-life and storage and effects of milk sEV modifications on the delivery of therapeutic cargo to diseased tissues.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Camundongos , Ratos , Animais , Suínos , Leite , Vesículas Extracelulares/metabolismo , Linhagem Celular , Sistemas de Liberação de Medicamentos
8.
Angew Chem Int Ed Engl ; 62(19): e202302693, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36896843

RESUMO

The charge transport through single-molecule electronic devices can be controlled mechanically by changing the molecular geometrical configuration in situ, but the tunable conductance range is typically less than two orders of magnitude. Herein, we proposed a new mechanical tuning strategy to control the charge transport through the single-molecule junctions via switching quantum interference patterns. By designing molecules with multiple anchoring groups, we switched the electron transport between the constructive quantum interference (CQI) pathway and the destructive quantum interference (DQI) pathway, and more than four orders of magnitude conductance variation can be achieved by shifting the electrodes in a range of about 0.6 nm, which is the highest conductance range ever achieved using mechanical tuning.

9.
Am J Physiol Cell Physiol ; 322(5): C865-C874, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35319899

RESUMO

Exosomes are natural nanoparticles that originate in the endocytic system. Exosomes play an important role in cell-to-cell communication by transferring RNAs, lipids, and proteins from donor cells to recipient cells or by binding to receptors on the recipient cell surface. The concentration of exosomes and the diversity of cargos are high in milk. Exosomes and their cargos resist degradation in the gastrointestinal tract and during processing of milk in dairy plants. They are absorbed and accumulate in tissues following oral administrations, cross the blood-brain barrier, and dietary depletion and supplementation elicit phenotypes. These features have sparked the interest of the nutrition and pharmacology communities for exploring milk exosomes as novel bioactive food compounds and for delivering drugs to diseased tissues. This review discusses the current knowledgebase, uncertainties, and controversies in these lines of scholarly endeavor and health research.


Assuntos
Exossomos , Animais , Transporte Biológico , Comunicação Celular , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo , Leite/química , Estado Nutricional
10.
J Hepatol ; 76(1): 123-134, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464659

RESUMO

BACKGROUND & AIMS: Mounting evidence implicates the Hippo downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in hepatocellular carcinoma (HCC). We investigated the functional contribution of YAP and/or TAZ to c-MYC-induced liver tumor development. METHODS: The requirement for YAP and/or TAZ in c-Myc-driven hepatocarcinogenesis was analyzed using conditional Yap, Taz, and Yap;Taz knockout (KO) mice. An hepatocyte-specific inducible TTR-CreERT2 KO system was applied to evaluate the role of YAP and TAZ during tumor progression. Expression patterns of YAP, TAZ, c-MYC, and BCL2L12 were analyzed in human HCC samples. RESULTS: We found that the Hippo cascade is inactivated in c-Myc-induced mouse HCC. Intriguingly, TAZ mRNA levels and activation status correlated with c-MYC activity in human and mouse HCC, but YAP mRNA levels did not. We demonstrated that TAZ is a direct transcriptional target of c-MYC. In c-Myc induced murine HCCs, ablation of Taz, but not Yap, completely prevented tumor development. Mechanistically, TAZ was required to avoid c-Myc-induced hepatocyte apoptosis during tumor initiation. The anti-apoptotic BCL2L12 gene was identified as a novel target regulated specifically by YAP/TAZ, whose silencing strongly suppressed c-Myc-driven murine hepatocarcinogenesis. In c-Myc murine HCC lesions, conditional knockout of Taz, but not Yap, led to tumor regression, supporting the requirement of TAZ for c-Myc-driven HCC progression. CONCLUSIONS: TAZ is a pivotal player at the crossroad between the c-MYC and Hippo pathways in HCC. Targeting TAZ might be beneficial for the treatment of patients with HCC and c-MYC activation. LAY SUMMARY: The identification of novel treatment targets and approaches for patients with hepatocellular carcinoma is crucial to improve survival outcomes. We identified TAZ as a transcriptional target of c-MYC which plays a critical role in c-MYC-dependent hepatocarcinogenesis. TAZ could potentially be targeted for the treatment of patients with c-MYC-driven hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/efeitos adversos , Proteínas de Sinalização YAP/efeitos adversos , Animais , Carcinoma Hepatocelular/fisiopatologia , Proteínas de Ligação a DNA/efeitos adversos , Proteínas de Ligação a DNA/análise , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatologia , Camundongos , Camundongos Knockout , Estatísticas não Paramétricas , Fatores de Transcrição/efeitos adversos , Fatores de Transcrição/análise , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas de Sinalização YAP/genética
11.
Am J Pathol ; 191(5): 930-946, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545120

RESUMO

Hepatocellular carcinoma (HCC) and hepatoblastoma are the major types of primary liver cancer in adulthood and childhood, respectively. Wnt/ß-catenin signaling deregulation is one of the most frequent genetic events in hepatocarcinogenesis. APC regulator of WNT signaling pathway (APC) encodes an inhibitor of the Wnt cascade and acts as a tumor suppressor. Germline defects of the APC gene lead to familial adenomatous polyposis, and its somatic mutations occur in multiple tumor types. However, the contribution of APC in hepatocarcinogenesis remains unclear. Therefore, APC mutations and expression patterns were examined in human HCC and hepatoblastoma samples. Whether loss of Apc alone or in cooperation with other oncogenes triggers liver tumor development in vivo was also investigated. sgApc alone could not drive liver tumor formation, but synergized with activated oncogenes (YapS127A, TazS89A, and c-Met) to induce hepatocarcinogenesis. Mechanistically, Apc deletion induced the activation of ß-catenin and its downstream targets in mouse liver tumors. Furthermore, Ctnnb1 ablation or TCF4-mediated transcription blockade completely prevented liver tumor formation, indicating the requirement of a functional ß-catenin pathway for loss of Apc-driven hepatocarcinogenesis. This study shows that a subset of HCC patients with loss-of-function APC mutations might benefit from therapeutic strategies targeting the Wnt/ß-catenin pathway.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/genética , Carcinoma Hepatocelular/genética , Hepatoblastoma/genética , Neoplasias Hepáticas/genética , Via de Sinalização Wnt/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatoblastoma/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/patologia , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes
12.
Hepatology ; 74(1): 248-263, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368437

RESUMO

BACKGROUND AND AIMS: Mothers against decapentaplegic homolog (SMAD) 7 is an antagonist of TGF-ß signaling. In the present investigation, we sought to determine the relevance of SMAD7 in liver carcinogenesis using in vitro and in vivo approaches. APPROACH AND RESULTS: We found that SMAD7 is up-regulated in a subset of human HCC samples with poor prognosis. Gene set enrichment analysis revealed that SMAD7 expression correlates with activated yes-associated protein (YAP)/NOTCH pathway and cholangiocellular signature genes in HCCs. These findings were substantiated in human HCC cell lines. In vivo, overexpression of Smad7 alone was unable to initiate HCC development, but it significantly accelerated c-Myc/myeloid cell leukemia 1 (MCL1)-induced mouse HCC formation. Consistent with human HCC data, c-Myc/MCL1/Smad7 liver tumors exhibited an increased cholangiocellular gene expression along with Yap/Notch activation and epithelial-mesenchymal transition (EMT). Intriguingly, blocking of the Notch signaling did not affect c-Myc/MCL1/Smad7-induced hepatocarcinogenesis while preventing cholangiocellular signature expression and EMT, whereas ablation of Yap abolished c-Myc/MCL1/Smad7-driven HCC formation. In mice overexpressing a myristoylated/activated form of AKT, coexpression of SMAD7 accelerated carcinogenesis and switched the phenotype from HCC to intrahepatic cholangiocarcinoma (iCCA) lesions. In human iCCA, SMAD7 expression was robustly up-regulated, especially in the most aggressive tumors, and directly correlated with the levels of YAP/NOTCH targets as well as cholangiocellular and EMT markers. CONCLUSIONS: The present data indicate that SMAD7 contributes to liver carcinogenesis by activating the YAP/NOTCH signaling cascade and inducing a cholangiocellular and EMT signature.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Hepatocelular/genética , Colangiocarcinoma/genética , Neoplasias Hepáticas/genética , Proteína Smad7/genética , Idoso , Animais , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Carcinogênese/genética , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Hepatectomia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Receptores Notch/metabolismo , Proteína Smad7/metabolismo , Regulação para Cima , Proteínas de Sinalização YAP/metabolismo
13.
Semin Liver Dis ; 41(1): 19-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764482

RESUMO

Liver cancer is the second most lethal malignancy worldwide. Cell lines and murine models are the most common tools for modeling human liver carcinogenesis. Most recently, organoids with a three-dimensional structure derived from primary tissues or cells have been applied to liver cancer research. Organoids can be generated from induced pluripotent stem cells, embryonic or adult, healthy or diseased tissues. In particular, liver organoids have been widely employed in mechanistic studies aimed at delineating the molecular pathways responsible for hepatocarcinogenesis. The introduction of clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) and microengineered miniorganoid technologies into liver organoids for cancer study has significantly accelerated these investigations. Translational advances have been made by utilizing liver tumor organoids for anticancer drug screening, biobanking, omics profiling, and biomarker discovery. This review summarizes the latest advances and the remaining challenges in the use of organoid models for the study of liver cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias Hepáticas , Animais , Bancos de Espécimes Biológicos , Sistemas CRISPR-Cas , Humanos , Camundongos , Organoides
14.
J Hepatol ; 75(4): 888-899, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34052254

RESUMO

BACKGROUND & AIMS: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is upregulated in many tumor types and is a promising target for cancer therapy. Herein, we elucidated the functional role of FAK in intrahepatic cholangiocarcinoma (iCCA) development and progression. METHODS: Expression levels and activation status of FAK were determined in human iCCA samples. The functional contribution of FAK to Akt/YAP murine iCCA initiation and progression was investigated using conditional Fak knockout mice and constitutive Cre or inducible Cre mice, respectively. The oncogenic potential of FAK was further examined via overexpression of FAK in mice. In vitro cell line studies and in vivo drug treatment were applied to address the therapeutic potential of targeting FAK for iCCA treatment. RESULTS: FAK was ubiquitously upregulated and activated in iCCA lesions. Ablation of FAK strongly delayed Akt/YAP-driven mouse iCCA initiation. FAK overexpression synergized with activated AKT to promote iCCA development and accelerated Akt/Jag1-driven cholangiocarcinogenesis. Mechanistically, FAK was required for YAP(Y357) phosphorylation, supporting the role of FAK as a central YAP regulator in iCCA. Significantly, ablation of FAK after Akt/YAP-dependent iCCA formation strongly suppressed tumor progression in mice. Furthermore, a remarkable iCCA growth reduction was achieved when a FAK inhibitor and palbociclib, a CDK4/6 inhibitor, were administered simultaneously in human iCCA cell lines and Akt/YAP mice. CONCLUSIONS: FAK activation contributes to the initiation and progression of iCCA by inducing the YAP proto-oncogene. Targeting FAK, either alone or in combination with anti-CDK4/6 inhibitors, may be an effective strategy for iCCA treatment. LAY SUMMARY: We found that the protein FAK (focal adhesion kinase) is upregulated and activated in human and mouse intrahepatic cholangiocarcinoma samples. FAK promotes intrahepatic cholangiocarcinoma development, whereas deletion of FAK strongly suppresses its initiation and progression. Combined FAK and CDK4/6 inhibitor treatment had a strong anti-cancer effect in in vitro and in vivo models. This combination therapy might represent a valuable and novel treatment against human intrahepatic cholangiocarcinoma.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/efeitos adversos , Proteínas de Sinalização YAP/efeitos dos fármacos , Animais , California , Colangiocarcinoma/etiologia , Estudos de Coortes , Modelos Animais de Doenças , Proteína-Tirosina Quinases de Adesão Focal/administração & dosagem , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Sinalização YAP/administração & dosagem
15.
J Hepatol ; 75(1): 120-131, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577921

RESUMO

BACKGROUND & AIMS: Gain of function (GOF) mutations in the CTNNB1 gene are one of the most frequent genetic events in hepatocellular carcinoma (HCC). T-box transcription factor 3 (TBX3) is a liver-specific target of the Wnt/ß-catenin pathway and thought to be an oncogene mediating activated ß-catenin-driven HCC formation. METHODS: We evaluated the expression pattern of TBX3 in human HCC specimens. Tbx3 was conditionally knocked out in murine HCC models by hydrodynamic tail vein injection of Cre together with c-Met and ΔN90-ß-catenin (c-Met/ß-catenin) in Tbx3flox/flox mice. TBX3 was overexpressed in human HCC cell lines to investigate the functions of TBX3 in vitro. RESULTS: A bimodal expression pattern of TBX3 in human HCC samples was detected: high expression of TBX3 in GOF CTNNB1 HCC and downregulation of TBX3 in non-CTNNB1 mutant tumors. High expression of TBX3 was associated with increased differentiation and decreased expression signatures of tumor growth. Using Tbx3flox/flox mice, we found that ablation of Tbx3 significantly accelerates c-Met/ß-catenin-driven HCC formation. Moreover, Tbx3(-) HCC demonstrated increased YAP/TAZ activity. The accelerated tumor growth induced by loss of TBX3 in c-Met/ß-catenin mouse HCC was successfully prevented by overexpression of LATS2, which inhibited YAP/TAZ activity. In human HCC cell lines, overexpression of TBX3 inhibited HCC cell growth as well as YAP/TAZ activation. A negative correlation between TBX3 and YAP/TAZ target genes was observed in human HCC samples. Mechanistically, phospholipase D1 (PLD1), a known positive regulator of YAP/TAZ, was identified as a novel transcriptional target repressed by TBX3. CONCLUSION: Our study suggests that TBX3 is induced by GOF CTNNB1 mutants and suppresses HCC growth by inactivating PLD1, thus leading to the inhibition of YAP/TAZ oncogenes. LAY SUMMARY: TBX3 is a liver-specific target of the Wnt/ß-catenin pathway and thought to be an oncogene in promoting liver cancer development. Herein, we demonstrate that TBX3 is in fact a tumor suppressor gene that restricts liver tumor growth. Strategies which increase TBX3 expression and/or activities may be effective for HCC treatment.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Neoplasias Hepáticas , beta Catenina , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Descoberta de Drogas , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor/fisiologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
16.
Am J Pathol ; 190(7): 1414-1426, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32275903

RESUMO

Cholestatic liver injury may lead to a series of hepatobiliary syndromes, which can progress to cirrhosis and impaired liver regeneration, eventually resulting in liver-related death. Mammalian target of rapamycin complex 2 (mTORC2) is a major regulator of liver metabolism and tumor development. However, the role of mTORC2 signaling in cholestatic liver injury has not been characterized to date. In this study, we generated liver-specific Rictor knockout mice to block the mTORC2 signaling pathway. Mice were treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce cholestatic liver injury. DDC feeding induced cholestatic liver injury and ductular reaction as well as activation of the mTORC2/Akt signaling pathway in wild-type mice. Loss of mTORC2 led to significantly decreased oval cell expansion after DDC feeding. Mechanistically, this phenotype was independent of mTORC1/fatty acid synthase cascade (Fasn) or yes-associated protein (Yap) signaling. Notch pathway was instead strongly inhibited during DDC-induced cholestatic liver injury in liver-specific Rictor knockout mice. Furthermore, mTORC2 deficiency in adult hepatocytes did not inhibit ductular reaction in this cholestatic live injury mouse model. Our results indicated that mTORC2 signaling effectively regulates liver regeneration by inducing oval cell proliferation. Liver progenitor cells or bile duct cells, rather than mature hepatocytes, would be the major source of ductular reaction in DDC-induced cholestatic liver injury.


Assuntos
Colestase/metabolismo , Hepatopatias/metabolismo , Regeneração Hepática/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais/fisiologia , Animais , Ductos Biliares/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças , Hepatócitos/metabolismo , Hepatopatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco/metabolismo
17.
Am J Pathol ; 190(4): 817-829, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035060

RESUMO

Liver regeneration is a fundamental biological process required for sustaining body homeostasis and restoring liver function after injury. Emerging evidence demonstrates that cytokines, growth factors, and multiple signaling pathways contribute to liver regeneration. Mammalian target of rapamycin complex 2 (mTORC2) regulates cell metabolism, proliferation and survival. The major substrates for mTORC2 are the AGC family members of kinases, including AKT, SGK, and PKC-α. We investigated the functional roles of mTORC2 during liver regeneration. Partial hepatectomy (PHx) was performed in liver-specific Rictor (the pivotal unit of mTORC2 complex) knockout (RictorLKO) and wild-type (Rictorfl/fl) mice. Rictor-deficient mice were found to be more intolerant to PHx and displayed higher mortality after PHx. Mechanistically, loss of Rictor resulted in decreased Akt phosphorylation, leading to a delay in hepatocyte proliferation and lipid droplets formation along liver regeneration. Overall, these results indicate an essential role of the mTORC2 signaling pathway during liver regeneration.


Assuntos
Proliferação de Células , Hepatectomia , Regeneração Hepática , Fígado/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/fisiologia , Animais , Pontos de Checagem do Ciclo Celular , Feminino , Lipídeos/análise , Fígado/metabolismo , Fígado/cirurgia , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transdução de Sinais
18.
J Hepatol ; 71(4): 742-752, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31195063

RESUMO

BACKGROUND & AIMS: The ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7) is recognized as a tumor suppressor in many cancer types due to its ability to promote the degradation of numerous oncogenic target proteins. Herein, we aimed to elucidate its role in intrahepatic cholangiocarcinoma (iCCA). METHODS: Herein, we first confirmed that FBXW7 gene expression was reduced in human iCCA specimens. To identify the molecular mechanisms by which FBXW7 dysfunction promotes cholangiocarcinogenesis, we generated a mouse model by hydrodynamic tail vein injection of Fbxw7ΔF, a dominant negative form of Fbxw7, either alone or in association with an activated/myristylated form of AKT (myr-AKT). We then confirmed the role of c-MYC in human iCCA cell lines and its relationship to FBXW7 expression in human iCCA specimens. RESULTS: FBXW7 mRNA expression is almost ubiquitously downregulated in human iCCA specimens. While forced overexpression of Fbxw7ΔF alone did not induce any appreciable abnormality in the mouse liver, co-expression with AKT triggered cholangiocarcinogenesis and mice had to be euthanized by 15 weeks post-injection. At the molecular level, a strong induction of Fbxw7 canonical targets, including Yap, Notch2, and c-Myc oncoproteins, was detected. However, only c-MYC was consistently confirmed as a FBXW7 target in human CCA cell lines. Most importantly, selected ablation of c-Myc completely impaired iCCA formation in AKT/Fbxw7ΔF mice, whereas deletion of either Yap or Notch2 only delayed tumorigenesis in the same model. In human iCCA specimens, an inverse correlation between the expression levels of FBXW7 and c-MYC transcriptional activity was observed. CONCLUSIONS: Downregulation of FBXW7 is ubiquitous in human iCCA and cooperates with AKT to induce cholangiocarcinogenesis in mice via c-Myc-dependent mechanisms. Targeting c-MYC might represent an innovative therapy against iCCA exhibiting low FBXW7 expression. LAY SUMMARY: There is mounting evidence that FBXW7 functions as a tumor suppressor in many cancer types, including intrahepatic cholangiocarcinoma, through its ability to promote the degradation of numerous oncoproteins. Herein, we have shown that the low expression of FBXW7 is ubiquitous in human cholangiocarcinoma specimens. This low expression is correlated with increased c-MYC activity, leading to tumorigenesis. Our findings suggest that targeting c-MYC might be an effective treatment for intrahepatic cholangiocarcinoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Colangiocarcinoma , Proteína 7 com Repetições F-Box-WD/metabolismo , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor Notch2/metabolismo , Animais , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Terapia de Alvo Molecular , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
19.
Am J Pathol ; 188(4): 995-1006, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378174

RESUMO

Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors.


Assuntos
Linhagem da Célula , Neoplasias Hepáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Ductos Biliares/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Feminino , Via de Sinalização Hippo , Humanos , Masculino , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Transcrição Gênica , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA