RESUMO
Undergoing endothelial-to-hematopoietic transition, a small fraction of embryonic aortic endothelial cells specializes into hemogenic endothelial cells (HECs) and eventually gives rise to hematopoietic stem cells (HSCs). Previously, we found that the activity of ribosome biogenesis (RiBi) is highly enriched in the HSC-primed HECs compared with adjacent arterial endothelial cells; however, whether RiBi is required in HECs for the generation of HSCs remains to be determined. Here, we have found that robust RiBi is markedly augmented during the endothelial-to-hematopoietic transition in mouse. Pharmacological inhibition of RiBi completely impeded the generation of HSCs in explant cultures. Moreover, disrupting RiBi selectively interrupted the HSC generation potential of HECs rather than T1 pre-HSCs, which was in line with its influence on cell cycle activity. Further investigation revealed that, upon HEC specification, the master transcription factor Runx1 dramatically bound to the loci of genes involved in RiBi, thereby facilitating this biological process. Taken together, our study provides functional evidence showing the indispensable role of RiBi in generating HSCs from HECs, providing previously unreported insights that may contribute to the improvement of HSC regeneration strategies.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Hemangioblastos , Células-Tronco Hematopoéticas , Ribossomos , Animais , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Camundongos , Ribossomos/metabolismo , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Diferenciação Celular , Camundongos Endogâmicos C57BL , Hematopoese/genética , Biogênese de OrganelasRESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.
RESUMO
Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.
Assuntos
Antígeno B7-H1/metabolismo , Proteínas Culina/metabolismo , Ciclina D/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Vigilância Imunológica , Neoplasias/imunologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Evasão Tumoral/imunologia , Proteínas 14-3-3/metabolismo , Animais , Antígeno B7-H1/biossíntese , Proteínas Cdh1/metabolismo , Ciclo Celular , Linhagem Celular , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Proteínas Nucleares/química , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Próstata/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Proteínas Repressoras/químicaRESUMO
INTRODUCTION: Melanocyte ferroptosis has been proven to contribute to the development of vitiligo. Tanshinone IIA (TSA), a Chinese herbal extract, has been shown to inhibit vitiligo progression. Whether TSA regulates ferroptosis in melanocytes remains unclear. METHODS: Hydrogen peroxide (H2O2) was used to induce melanocytes to stimulate vitiligo cell model in vitro. Cell proliferation was examined by 5-ethynyl-2'-deoxyuridine assay. The levels of malondialdehyde (MDA), reactive oxygen species (ROS), glutathione peroxidase (GSH) and iron (Fe2+) were detected by corresponding commercial kit. The protein levels of ferroptosis-related markers and Nrf2 pathway-related markers were examined using western blot and immunofluorescence staining. Cell viability and cytotoxicity were analyzed using cell counting kit 8 assay and lactate dehydrogenase (LDH) detection. Mitochondrial morphology was examined using a transmission electron microscope. RESULTS: After H2O2 treatment, melanocyte proliferation was reduced, while oxidative stress and ferroptosis were enhanced. TSA treatment could inhibit ferroptosis in H2O2-induced melanocytes. Besides, TSA could activate Nrf2 pathway and promote Nrf2 nuclear translocation, and Nrf2 specific inhibitor (ML385) also reversed the inhibitory effect of TSA on H2O2-induced melanocyte ferroptosis. CONCLUSION: Our data showed that TSA alleviated H2O2-induced melanocyte ferroptosis via activating Nrf2 pathway.
RESUMO
D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3-CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3-CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3-CDK6 complexes. We propose that measuring the levels of cyclin D3-CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3-CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.
Assuntos
Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fosfofrutoquinase-1/metabolismo , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Purinas/farmacologia , Purinas/uso terapêutico , Piruvato Quinase/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Pyroptosis has been implicated in the development of human diseases, including vitiligo. TanshinoneIIA has been confirmed to play anti-vitiligo role. However, whether tanshinoneIIA inhibits vitiligo progression via regulating cell pyroptosis remains unclear. METHODS: Hydrogen peroxide (H2 O2 )-induced melanocytes were used to mimic vitiligo cell model in vitro. Cell viability was assessed by cell counting kit 8 assay, and reactive oxygen species (ROS) production was detected by DCFH-DA staining. Nod-like receptor protein 3 (NLRP3) expression was detected by quantitative real-time PCR, western blot and immunofluorescence staining. Cell pyroptosis was measured using flow cytometry, and the contents of interleukin-1ß and interleukin-18 were determined by ELISA. Besides, the protein levels of apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-Caspase-1 were examined by western blot analysis. RESULTS: H2 O2 could induce ROS production, NLRP3 expression and pyroptosis in melanocytes. TanshinoneIIA inhibited ROS production, pyroptosis, and the expression of NLRP3, ASC and cleaved-caspase-1 in H2 O2 -induced melanocytes. Compared with the function of ROS inhibitor (NAC), tanshinoneIIA acted as a ROS scavenger to relieve melanocyte pyroptosis. In addition, NLRP3 inhibitor (MCC950) also could aggravate the inhibition effect of tanshinoneIIA on melanocyte pyroptosis. CONCLUSION: TanshinoneIIA suppressed melanocyte pyroptosis probably through modulating the ROS/NLRP3 signaling axis, which provides the evidence for therapeutic effect in vitiligo.
Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Vitiligo , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Espécies Reativas de Oxigênio , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Piroptose , Vitiligo/tratamento farmacológico , Caspase 1/metabolismo , Caspase 1/farmacologiaRESUMO
Long noncoding RNAs (lncRNAs) play important roles in immune regulation in humans and animals. The lnc-34015 was discovered to be critical for the development of muscles, based on the muscle transcriptome of pigs; however, the underlying molecular mechanism requires better understanding. Here, the sequence characteristics of lnc-34015 were analyzed and a competitive endogenous RNA regulatory network of lncRNA was predicted. The developmental expression trend and tissue expression profiles of lnc-34015 were investigated using quantitative polymerase chain reaction. The lnc-34015 sequence is overlapped with introns 11 and 12 of CWF19L1, while CWF19L1, PKD2L1, and CHUK were identified as cis-regulatory genes of lnc-34015. Bioinformatics analyses revealed that lnc-34015 binds to 15 microRNAs (miRNAs), including miR-3646, miR-377-3p, and miR-190b-3p, to regulate downstream gene expression. GO and KEGG enrichment results show that lnc-34015 was mainly involved in cell proliferation, stress response, transcriptional regulation, and alternative splicing. The expression trend of lnc-34015 in muscle was similar to that of target genes and opposite to that of miRNAs. The expression of lnc-34015 was significantly higher in the porcine small intestine and IPEC-J2 cells. Our findings suggest that lnc-34015 regulates CHUK, ZBTB20, and XIAP gene expression by competing with endogenous RNAs to regulate porcine inflammatory responses.
Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Suínos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores de Superfície Celular/genética , Canais de Cálcio/genéticaRESUMO
Pollution from electronic-waste (E-waste) dismantling is of great concern. This study investigated the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs) in 253 cropland soil samples around an abandoned E-waste dismantling site in Taizhou city, Zhejiang province in China, using an analytical method which simultaneously extracted, purified and determined the identity and quantity of the three types of persistent organic pollutants. Meanwhile, their spatial distributions, pollution characteristics, and risk assessments were further analyzed. Total PCBs in the test soils ranged from below method detection limits (ND) to 2985.25 µg kg-1 on a dry weight basis (d.w.), and the spatial distribution indicated a "hot spot" of PCBs pollution in the study area. The PAHs were detected in all samples with total concentrations ranging from 4.99 to 2723.06 µg kg-1 d.w. The distribution of PBDEs showed the pollution characteristics of "family-run workshops", with a total content range of ND ~ 899.34 µg kg-1 d.w., of which BDE209 was typically the dominant congener, accounting for 74.05% of the total PBDEs content in the test soils, with the highest content reaching 857.72 µg kg-1 d.w. Results showed that the ecological and lifetime carcinogenic risks of PCBs and PAHs were low in the study area, but the health risk caused by oral ingestion and dermal contact accounted for the highest proportion of the total exposure risks, while inhalation could be ignored. PBDEs in soils of the study area were a potential chronic non-carcinogenic risk, particularly for children. Therefore, in order to protect human health and environment, it is necessary to regulate the management of E-waste dismantling sites and pollution control.
Assuntos
Resíduo Eletrônico , Bifenilos Policlorados , Criança , Humanos , Bifenilos Policlorados/análise , Monitoramento Ambiental , Resíduo Eletrônico/análise , Éteres Difenil Halogenados/análise , Fazendas , China , Solo , Medição de RiscoRESUMO
BACKGROUND: Androgenetic alopecia can affect up to 70% of males and 40% of females; however, certain therapeutic medications offer partial and transitory improvement but with major side effects. Dendrobium officinale polysaccharide (DOP) has been reported to improve androgen-related hair loss in mice, but the molecular mechanism remains unclear. OBJECTIVES: To explore the effects of DOP on androgenetic alopecia. METHODS: In this study, testosterone was subcutaneously administered to shave dorsa skin of mice to establish androgenetic alopecia; the effects of DOP in androgenetic alopecia were explored by DOP administration. RESULTS: Testosterone treatment extended the time of skin growing dark and hair growing, decreased the mean numbers of follicles in skin tissues, decreased ß-catenin and cyclin D1 levels, and elevated testosterone, DHT (dihydrotestosterone), and 5α-reductase levels. In contrast, DOP administration shortened skin growing dark and hair growing times, promoted follicle cell proliferation, increased follicle numbers, increased ß-catenin and cyclin D1 levels, and decreased testosterone, DHT, and 5α-reductase levels. CONCLUSION: DOP application significantly improved testosterone-induced hair follicle miniaturization and hair loss, possibly through affecting the Wnt signaling and hair follicle stem cell functions. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Assuntos
Dendrobium , Testosterona , Masculino , Feminino , Camundongos , Animais , Testosterona/farmacologia , beta Catenina/farmacologia , Ciclina D1/farmacologia , Cabelo , Alopecia/induzido quimicamente , Alopecia/tratamento farmacológico , Polissacarídeos/farmacologiaRESUMO
Current therapies for T-cell acute leukemia are based on risk stratification and have greatly improved the survival rate for patients, but mortality rates remain high owing to relapsed disease, therapy resistance, or treatment-related toxicities/infection. Patients with relapsed disease continue to have poor outcomes. In the past few years, newer agents have been investigated to optimize upfront therapies for higher-risk patients in the hopes of decreasing relapse rates. This review summarizes the progress of chemo/targeted therapies using Nelarabine/Bortezomib/CDK4/6 inhibitors for T-ALL in clinical trials and novel strategies to target NOTCH-induced T-ALL. We also outline immunotherapy clinical trials using monoclonal/bispecific T-cell engaging antibodies, anti-PD1/anti-PDL1 checkpoint inhibitors, and CAR-T for T-ALL therapy. Overall, pre-clinical studies and clinical trials showed that applying monoclonal antibodies or CAR-T for relapsed/refractory T-ALL therapy is promising. The combination of target therapy and immunotherapy may be a novel strategy for T-ALL treatment.
Assuntos
Anticorpos Biespecíficos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Receptores de Antígenos Quiméricos/uso terapêutico , Imunoterapia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia AdotivaRESUMO
Leptin is a well-known adipokine that plays critical role in adiposity. To further investigate the role of leptin in adiposity, we utilized leptin overexpressing transgenic pigs and evaluated the effect of leptin on growth and development, fat deposition, and lipid metabolism at tissue and cell level. Leptin transgenic pigs were produced and divided into two groups: elevated leptin expression (leptin ( +)) and normal leptin expression group (control). Results indicated that leptin ( +) pigs had elevated leptin protein and mRNA expression levels and exhibited sluggish growth and development followed by decreased subcutaneous fat thickness, low serum triglycerides, saturated, unsaturated fatty acids and high cholesterol esters (p < 0.05). There were differences in the lipid metabolism related genes at different fat depots, including upregulation of PPARγ, AGPAT6, PLIN2, HSL and ATGL in subcutaneous, PPARγ in perirenal, and FAT/CD36 and PLIN2 in mesenteric adipose tissues and downregulation of AGPAT6 and ATGL in perirenal and AGPAT6 in mesenteric adipose tissues (p < 0.05). Additionally, in-vitro cultured leptin ( +) preadipocytes exhibited upregulation of PPARγ, FAT/CD36, ACACA, AGPAT, PLIN2, ATGL and HSL as compared to control (p < 0.05). These findings suggested that homeostasis imbalance in lipolysis and lipogenesis at adipose tissue and adipocytes levels led to low subcutaneous fat depots in leptin overexpression pigs. These pigs can act as model for obesity and related metabolic disorder.
Assuntos
Leptina , PPAR gama , Tecido Adiposo/metabolismo , Animais , Leptina/genética , Leptina/metabolismo , Lipólise , Obesidade/genética , PPAR gama/genética , PPAR gama/metabolismo , PPAR gama/farmacologia , Suínos/genética , Triglicerídeos/genéticaRESUMO
Soil microbial communities are often not resistant to the impact caused by microbial invasions, both in terms of structure and functionality, but it remains unclear whether these changes persist over time. Here, we used three strains of Escherichia coli O157:H7 (E. coli O157:H7), a species used for modelling bacterial invasions, to evaluate the resilience of the bacterial communities from four Chinese soils to invasion. The impact of E. coli O157:H7 strains on soil native communities was tracked for 120 days by analysing bacterial community composition as well as their metabolic potential. We showed that soil native communities were not resistant to invasion, as demonstrated by a decline in bacterial diversity and shifts in bacterial composition in all treatments. The resilience of native bacterial communities (diversity and composition) was inversely correlated with invader's persistence in soils (R2 = 0.487, p < 0.001). Microbial invasions also impacted the functionality of the soil communities (niche breadth and community niche), the degree of resilience being dependent on soil or native community diversity. Collectively, our results indicate that bacteria invasions can potentially leave a footprint in the structure and functionality of soil communities, indicating the need of assessing the legacy of introducing exotic species in soil environments.
Assuntos
Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/metabolismo , Espécies Introduzidas , Interações Microbianas/fisiologia , Microbiologia do Solo , Ecossistema , Microbiota , Solo/químicaRESUMO
Full-Stokes polarimeters, equipped with the capability of discriminating light polarization states, can find important applications in various optical and optoelectronic devices. Nevertheless, currently most full-Stokes polarimeters require complex and bulky optical elements or optical metasystems integrated with metasurfaces, which can increase the cost and cause energy loss. Here, the anisotropy of chiral 2D perovskite single crystals is explored and the full-Stokes polarimeter based on pure chiral 2D perovskite single crystals is reported. By using optical anisotropy and the ability to distinguish the helicity of the circularly polarized light, chiral 2D perovskite polarimeter integrates the polarizer, waveplate, and photodetector together and thus can be able to discriminate the polarization states of light. The as-fabricated device exhibits a photoresponsivity of 0.136 A W-1 and a detectivity of 1.2 × 1010 Jones. This study provides a paradigm to construct filterless on-chip Stokes polarimeter with great simplicity and low cost.
RESUMO
PURPOSE: microRNA-128 (miR-128), a brain-enriched microRNA, has been reported to play a crucial role in the treatment of diseases. The c-Jun N-terminal kinase (JNK) signaling pathway exerts various biological functions such as regulation of cell proliferation, differentiation and apoptosis. In this study, we investigated the role of the miRNA-128-JNK signaling pathway in proliferation, apoptosis and autophagy of porcine adipose-derived stem cells (ASCs). METHODS: After over-expressing miR-128 in porcine ASCs, cell proliferation was determined by 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) method, cell apoptosis was observed by Flow cytometry (FCM), the expression of miR-128, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) was measured by RNA preparation and reverse transcription polymerase chain reaction (RT-PCR), and protein expression of JNK, phosphorylated JNK (p-JNK) and LC3B was analyzed by Western Blot analysis. RESULTS: The over-expression of miR-128 potently promoted cell proliferation and autophagy while suppressed the apoptosis of porcine ASCs. In addition, the down-regulated expression level of p-JNK was detected in miR-128-over-expressed porcine ASCs. However, followed by the block of the JNK signaling pathway using SP600125 inhibitor, the effects of miR-128 on the proliferation, apoptosis and autophagy of porcine ASCs were significantly suppressed. CONCLUSION: It is demonstrated that the miR-128-JNK signaling pathway is a potential therapeutic target for the treatment of obesity.
Assuntos
Proliferação de Células/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Animais , Antracenos/farmacologia , Apoptose/genética , Autofagia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/genética , SuínosRESUMO
Gynaephora qinghaiensis (Lepidoptera: Lymantriidae: Gynaephora), a serious economic pest in alpine meadows, is mainly distributed in Yushu prefecture, Qinghai province, China. In this study, we aimed to investigate the genetic diversity and population structure of G. qinghaiensis through analyzing the sequence of 194 mitochondrial cytochrome oxidase subunit (COI) genes (658 bp in length) identified from 10 geographic populations located in three different countries, including Zhiduo, Zaduo, and Chengduo, of Yushu prefecture. Eleven haplotypes were identified from all populations of G. qinghaiensis with high levels of haplotype diversity (0.78500) and low levels of nucleotide diversity (0.00511). High levels of genetic differentiation and low levels of gene flow were also detected among the populations of G. qinghaiensis. Analysis of molecular variance (AMOVA) showed that 90.13% of the variation was attributed to distribution among groups (Chengduo, Zhiduo, and Zaduo), and 5.22% and 4.65% were, respectively, attributed to distribution among populations, within group, and within populations. The result of mantel test showed a highly significant positive correlation (P < 0.01) between FST and geographical distance. A maximum likelihood tree showed that most haplotypes were grouped into three clusters corresponding to the three counties, suggesting a significant phylogeographic structure in the populations of G. qinghaiensis. The haplotype networks revealed that H2 may be the most primitive haplotype and the most adaptable in nature. Populations 7# and 8# had haplotype H2 and higher haplotype diversity; therefore, we speculated that the G. qinghaiensis in both populations were more adaptable to the environment and had greater outbreak potential and, therefore, should be focused on in terms of prevention and control. Our findings provide valuable information for further study of the population structure and phylogeny of G. qinghaiensis and provide a theoretical basis for the control of G. qinghaiensis.
Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , China , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Mitocondriais , Genética Populacional , Haplótipos , Filogenia , FilogeografiaRESUMO
Psoriasis is a recrudescent chronic immune-mediated inflammatory dermatosis; the production and release of proinflammatory cytokines/chemokines such as TNF-α has been regarded as critical issues during psoriasis pathogenesis. Based on online microarray profiles, the expression of the transcription factor GATA3 was downregulated in psoriasis lesion tissues. In the present study, we searched for miRNAs that might be related to TNF-α and GATA3 to investigate an in-depth understanding of psoriasis pathogenesis. Herein, higher TNF-α and GATA3 protein levels were observed in psoriasis lesion tissues and that GATA3 overexpression significantly reverses TNF-α-induced increases within the production of IL-6 and CXCL8 in keratinocytes. TNF-α stimulation increases miR-155 expression dose-independently, and the miR-155 inhibitor significantly reverses TNF-α-induced suppression of GATA3 protein levels and increases IL-6 and CXCL8 production. miR-155 could suppress the expression of GATA3 by targeting its 3'UTR, while GATA3 could activate the transcription of IL37 by targeting its promoter region. miR-155 overexpression reduces IL37 protein and increases CXCL8 production; GATA3 overexpression might significantly attenuate the effects of miR-155 overexpression. In contrast to GATA3, miR-155 expression is significantly upregulated in psoriasis lesion tissue and is negatively correlated with GATA3 and IL37. In summary, the miR-155/GATA3/IL37 axis modulates the production of IL-6 and CXCL8 upon TNF-α stimulation to affect psoriasis development. Thus, miR-155/GATA3/IL37 may be potent targets for psoriasis treatment, which needs further in vivo and clinical investigation.
Assuntos
Fator de Transcrição GATA3/metabolismo , Interleucina-1/metabolismo , MicroRNAs/metabolismo , Psoríase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regiões 3' não Traduzidas , Fator de Transcrição GATA3/antagonistas & inibidores , Fator de Transcrição GATA3/genética , Células HaCaT , Humanos , Interleucina-1/genética , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Regiões Promotoras Genéticas , Psoríase/genética , Pele/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
RATIONALE: Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE: To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS: Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS: These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteína B-100/metabolismo , Autofagia , Proteólise , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Camundongos , Ratos , Via SecretóriaRESUMO
Pyruvate kinase isoform M2 (PKM2) is a glycolysis enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate by transferring a phosphate from PEP to ADP. We report here that PKM2 localizes to the cell nucleus. The levels of nuclear PKM2 correlate with cell proliferation. PKM2 activates transcription of MEK5 by phosphorylating stat3 at Y705. In vitro phosphorylation assays show that PKM2 is a protein kinase using PEP as a phosphate donor. ADP competes with the protein substrate binding, indicating that the substrate may bind to the ADP site of PKM2. Our experiments suggest that PKM2 dimer is an active protein kinase, while the tetramer is an active pyruvate kinase. Expression of a PKM2 mutant that exists as a dimer promotes cell proliferation, indicating that protein kinase activity of PKM2 plays a role in promoting cell proliferation. Our study reveals an important link between metabolism alteration and gene expression during tumor transformation and progression.
Assuntos
Regulação da Expressão Gênica , Piruvato Quinase/fisiologia , Transcrição Gênica , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Humanos , MAP Quinase Quinase 5/genética , MAP Quinase Quinase 5/metabolismo , Fosforilação , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Fator de Transcrição STAT3/metabolismoRESUMO
Melanin metabolism disorders may cause severe impacts on the psychological and social activities of patients. Different from the other two steps of melanin metabolism, namely synthesis and transport, little has been known about the mechanism of melanin degradation. Isoimperatorin (ISO) suppressed the activity of tyrosinase, an essential enzyme in melanin biosynthesis, hence, we investigated the effects and mechanism of ISO in melanin reduction. ISO stimulation significantly reduces the melanin contents and PMEL 17 protein levels; meanwhile, the activity and the protein levels of two critical lysosomal enzymes, Cathepsin B and Cathepsin D, can be significantly increased by ISO treatment. MiR-3619 inhibited the expression of CSTB and CSTD, therefore affecting ISO-induced degradation of melanin. In summary, ISO reduces the melanin content via miR-3619/CSTB and miR-3619/CSTD axes. ISO could be a potent skin-whitening agent, which needs further in vivo and clinical investigation.
Assuntos
Catepsina B/metabolismo , Catepsina D/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Furocumarinas/farmacologia , Queratinócitos/metabolismo , Melaninas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Preparações Clareadoras de Pele/farmacologia , Catepsina B/genética , Catepsina D/genética , Técnicas de Silenciamento de Genes , Células HaCaT , Humanos , MicroRNAs/genética , Monofenol Mono-Oxigenase/antagonistas & inibidores , Transdução de Sinais/genética , Transfecção , Antígeno gp100 de Melanoma/metabolismoRESUMO
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).. This article has been retracted at the request of < the Editor in Chief. The Editor in Chief has been made aware of numerous problems with this paper regarding authorship, poor or insufficient supervision of researchers and the unauthorized use of data acquired from a lab visit by one of the authors.