Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Small ; 20(23): e2308484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38143292

RESUMO

Prussian blue analogs (PBAs) show great promise as anode materials for potassium-ion batteries (PIBs) due to their high specific capacity. However, PBAs still suffer from the drawbacks of low electronic conductivity and poor structural stability, leading to inadequate rate and cyclic performance. To address these limitations, CoFe PBA nanocubes wrapped with N/S doped carbon network (CoFe PBA@NSC) as anode for PIBs is designed by using thermal-induced in situ conversion strategy. As expected, the structural advantages of nanosized PBA cubes, such as abundant interfaces and large surface area, enable the CoFe PBA@NSC electrode to demonstrate superior rate properties (557 and 131 mAh g-1 at 0.05 and 10 A g-1) and low capacity degradation (0.093% per cycle over 1000 cycles at 0.5 A g-1). Furthermore, several ex situ characterizations revealed the K-ion storage mechanism. Fe+ and Co0 are generated during potassicization, followed by a completely reversible chemical state of iron while some cobalt monomers remained during depotassication. Additionally, the as-built potassium-ion hybrid capacitor based on CoFe PBA@NSC anode exhibits a high energy density of 118 Wh kg-1. This work presents an alternative but promising synthesis route for Prussian blue analogs, which is significant for the advancement of PIBs and other related energy storage devices.

2.
Small ; : e2406577, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246194

RESUMO

The poor cycling stability and rate performance of transition metal selenides (TMSs) are caused by their intrinsic low conductivity and poor structural stability, which hinders their application in potassium-ion batteries (PIBs). To address this issue, encapsulating TMSs within carbon nanoshells is considered a viable strategy. However, due to the lack and uncontrollability of internal void space, this structure cannot effectively mitigate the volume expansion induced by large K+, resulting in unsatisfactory electrochemical performance. Herein, peanut-shaped FeSe2@carbon yolk-shell capsules are prepared by modulation of the internal space. The active FeSe2 is encapsulated within a robust carbon shell and an optimal void space is retained between them. The outer carbon shell promotes electronic conductivity and avoids FeSe2 aggregation, while the internal void mitigates volume expansion and effectively ensures the structural integrity of the electrode. Consequently, the FeSe2@carbon anode demonstrates exceptional rate performance (242 mAh g-1 at 10 A g-1) and long cycling stability (350 mAh g-1 after 500 cycles at 1 A g-1). Furthermore, the effect of internal space modulation on electrochemical properties is elucidated. Meanwhile, ex situ characterizations elucidate the K+ storage mechanism. This work provides effective guidance for the design and the internal space modulation of advanced TMSs yolk-shell structures.

3.
Small ; 20(35): e2400767, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38676351

RESUMO

Fluorides are viewed as promising conversion-type Li-ion battery cathodes to meet the desired high energy density. FeOF is a typical member of conversion-type fluorides, but its major drawback is sluggish kinetics upon deep discharge. Herein, a heterostructured FeOF-MXene composite (FeOF-MX) is demonstrated to overcome this limitation. The rationally designed FeOF-MX electrode features a microsphere morphology consisting of closely packed FeOF nanoparticles, providing fast transport pathways for lithium ions while a continuous wrapping network of MXene nanosheets ensures unobstructed electron transport, thus enabling high-rate lithium storage with enhanced pseudocapacitive contribution. In/ex situ characterization techniques and theoretical calculations, both reveal that the lithium storage mechanism in FeOF arises from a hybrid intercalation-conversion process, and strong interfacial interactions between FeOF and MXene promote Li-ion adsorption and migration. Remarkably, through demarcating the conversion-type reaction with a controlled potential window, a symmetric full battery with prelithiated FeOF-MX as both cathode and anode is fabricated, achieving a high energy density of 185.5 Wh kg-1 and impressive capacity retention of 88.9% after 3000 cycles at 1 A g-1. This work showcases an effective route toward high-performance MXene engineered fluoride-based electrodes and provides new insights into constructing symmetric batteries yet with high-energy/power densities.

4.
Nanotechnology ; 33(15)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34952531

RESUMO

General CuCo2O4electrodes suffer a very low reversible capacity and poor cycling stability because of easily fading phenomena and volume change during cycling. To optimize the electrode, a facile method is conducted to fabricate a novel electrode of Cu@CuCo2O4@polypyrrole nanoflowers. Due to larger specific surface area and more electrochemical reactive areas of CuCo2O4@polypyrrole nanoflowers, the pseudocapacitance of thein situgrown CuCo2O4@polypyrrole (912 F g-1at 2 A g-1) is much higher than the pristine CuCo2O4(618 F g-1at 2 A g-1). Remarkably, the CuCo2O4@polypyrrole (cathode) and active carbon (anode) are used to assemble an asymmetric supercapacitor, which exhibits a relatively high energy density of 90 Wh kg-1at a power density of 2519 W kg-1and 35 Wh kg-1at a high-power density of 9109 W kg-1, and excellent cycling stability (about 90.4% capacitance retention over 10 000 cycles). The prominent performance of CuCo2O4@polypyrrole makes it as a potential electrode for supercapacitor.

5.
Chemistry ; 26(55): 12589-12595, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32596927

RESUMO

Electrochemical reduction of O2 (oxygen reduction reaction; ORR) provides an opportunity to achieve the commercial application of clean energy, but it remains challenging, so the rational design of inexpensive and efficient electrocatalysts is required. Palladium-based electrocatalysts have emerged as a class of the most promising candidates for the ORR, which could accelerate O2 adsorption, dissociation, and electron transfer. However, the metal Pd atoms tend to aggregate into nanoparticles, driven by the tendency of the metal surface free energy to decrease, which significantly reduces the atom utilization efficiency and the catalytic performance. Herein, a facile double solvent impregnation method is developed for the synthesis of highly dispersed Pd nanoparticles supported on hollow carbon spheres (Pd-HCS), which could act as efficient electrocatalysts for the ORR in basic solution. Systematic investigation reveals that the nitrogen-containing and oxygen-containing functional groups (especially -COOH groups) are essential for achieving the homogenous dispersion of Pd nanoparticles. Significantly, the optimized Pd-HCS electrocatalyst with homogeneously dispersed Pd nanoparticles and Pd-N sites delivers high electrocatalytic activity for the ORR and excellent stability, without significant decay in onset potential and half-potential and good resistance to methanol crossover. This work offers a new route for the rational design of efficient ORR electrocatalysts toward advanced materials and emerging applications.

6.
Chemistry ; 25(22): 5643-5647, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30767304

RESUMO

Here, a new approach to further improve graphdiyne (GDY) based materials by using benzyl disulfide (BDS) as the sulfur source is demonstrated. The S radicals, generated from the homolysis of BDS, can react with the acetylenic bonds and be well confined in the triangle-like pores of GDY, forming S-GDY. The as-prepared S-GDY, which possesses numerous heteroatom defects and active sites, is suitable for applications in many electronic devices, such as lithium ion batteries (LIBs). As expected, the assembled LIBs based on S-GDY displayed improved electrochemical properties, including larger capacity and superior rate capability.

7.
Nano Lett ; 14(4): 1987-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24617337

RESUMO

It is a challenge to meld the energy of secondary batteries with the power of supercapacitors. Herein, we created electrodes finely tuned for this purpose, consisting of a monolayer of MnO nanocrystallites mechanically anchored by pore-surface terminations of 3D arrays of graphene-like carbon nanosheets ("3D-MnO/CNS"). The biomass-derived carbon nanosheets should offer a synthesis cost advantage over comparably performing designer nanocarbons, such as graphene or carbon nanotubes. High Li storage capacity is achieved by bulk conversion and intercalation reactions, while high rates are maintained through stable ∼20 nm scale diffusion distances. For example, 1332 mAh g(-1) is reached at 0.1 A g(-1), 567 mAh g(-1) at 5 A g(-1), and 285 mAh g(-1) at 20 A g(-1) with negligible degradation at 500 cycles. We employed 3D-MnO/CNS (anode) and carbon nanosheets (cathode) to create a hybrid capacitor displaying among the most promising performances reported: based on the active materials, it delivers 184 Wh kg(-1) at 83 W kg(-1) and 90 Wh kg(-1) at 15 000 W kg(-1) with 76% capacity retention after 5000 cycles.

8.
Adv Mater ; 36(1): e2307219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699330

RESUMO

Aqueous Zn metal batteries are promising candidates for large-scale energy storage due to their intrinsic advantages. However, Zn tends to deposit irregularly and forms dendrites driven by the uneven space electric field distribution near the Zn-electrolyte interphase. Herein it is demonstrated that trace addition of Co single atom anchored carbon (denoted as CoSA/C) in the electrolyte regulates the microspace electric field at the Zn-electrolyte interphase and unifies Zn deposition. Through preferential adsorption of CoSA/C on the Zn surface, the atomically dispersed Co-N3 with strong charge polarization effect can redistribute the local space electric field and regulate ion flux. Moreover, the dynamic adsorption/desorption of CoSA/C upon plating/stripping offers sustainable long-term regulation. Therefore, Zn||Zn symmetric cells with CoSA/C electrolyte additive deliver stable cycling up to 1600 h (corresponding to a cumulative plated capacity of 8 Ah cm-2 ) at a high current density of 10 mA cm-2 , demonstrating the sustainable feature of microspace electric field regulation at high current density and capacity.

9.
Chem Commun (Camb) ; 60(5): 566-569, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38093681

RESUMO

To mitigate Zn corrosion, dendrite growth and hydrogen evolution reactions (HER) in Zn-anode based electrochromic devices, hydrophobic CuZn5 alloy was coated on Zn@CuZn with lower nucleation potential, high coulombic efficiency, inhibited HER, and prolonged reversibility, enabling improved switching kinetics and cycling stability in an electrochromic Zn@CuZn||Prussian Blue (PB) device.

10.
Psychol Res Behav Manag ; 17: 1087-1102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495087

RESUMO

Background: The emergence of new technologies, such as artificial intelligence (AI), may manifest as technology panic in some people, including adolescents who may be particularly vulnerable to new technologies (the use of AI can lead to AI dependence, which can threaten mental health). While the relationship between AI dependence and mental health is a growing topic, the few existing studies are mainly cross-sectional and use qualitative approaches, failing to find a longitudinal relationship between them. Based on the framework of technology dependence, this study aimed to determine the prevalence of experiencing AI dependence, to examine the cross-lagged effects between mental health problems (anxiety/depression) and AI dependence and to explore the mediating role of AI use motivations. Methods: A two-wave cohort program with 3843 adolescents (Male = 1848, Mage = 13.21 ± 2.55) was used with a cross-lagged panel model and a half-longitudinal mediation model. Results: 17.14% of the adolescents experienced AI dependence at T1, and 24.19% experienced dependence at T2. Only mental health problems positively predicted subsequent AI dependence, not vice versa. For AI use motivation, escape motivation and social motivation mediated the relationship between mental health problems and AI dependence whereas entertainment motivation and instrumental motivation did not. Discussion: Excessive panic about AI dependence is currently unnecessary, and AI has promising applications in alleviating emotional problems in adolescents. Innovation in AI is rapid, and more research is needed to confirm and evaluate the impact of AI use on adolescents' mental health and the implications and future directions are discussed.

11.
J Colloid Interface Sci ; 664: 96-106, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460388

RESUMO

The means of structural hybridization such as heterojunction construction and carbon-coating engineering for facilitating charge transfer and electron transport are considered viable strategies to address the challenges associated with the low rate capability and poor cycling stability of sulfide-based anodes in potassium-ion batteries (PIBs). Motivated by these concepts, we have successfully prepared a hydrangea-like bimetallic sulfide heterostructure encapsulated in nitrogen-doped carbon (FMS@NC) using a simple solvothermal method, followed by poly-dopamine wrapping and a one-step sulfidation/carbonization process. When served as an anode for PIBs, this FMS@NC demonstrates a high specific capacity (585 mAh g-1 at 0.05 A/g) and long cycling stability. Synergetic effects of mitigated volume expansions and enhanced conductivity that are responsbile for such high performance have been verified to originate from the heterostructured sulfides and the N-doped carbon matrix. Meanwhile, comprehensive characterization reveals existence of an intercalation-conversion hybrid K-ion storage mechanism in this material. Impressively, a K-ion capacitor with the FMS@NC anode and a commercial activated carbon cathode exhibits a superior energy density of up to 192 Wh kg-1, a high power density, and outstanding cycling stability. This study provides constructive guidance for designing high-performance and durable potassium-ion storage anodes for next-generation energy storage devices.

12.
J Colloid Interface Sci ; 661: 671-680, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38310773

RESUMO

Metallic sulfides are currently considered as ideal anode materials for potassium-ion batteries by virtue of their high specific capacities. However, their low intrinsic electronic conductivity, large volume variation and dissolution of polysulfides in electrochemical reactions hinder their further development toward practical applications. Here, we propose an effective structural design strategy by encapsulating CoS2/SnS2 in sulfur-doped carbon layers, in which internal voids are created to relieve the strain in the CoS2/SnS2 core, while the sulfur-doped carbon layer serves to improve the electron transport and inhibit the dissolution of polysulfides. These features enable the as-designed anode to deliver a high specific capacity (520 mAh/g at 0.1 A/g), a high rate capability (185 mA h g-1 at 10 A/g) and lifespan (0.016 % capacity loss per cycle up to 1500 cycles). Our comprehensive electrochemical characterization reveals that the heterostructure of CoS2/SnS2 not only promotes charge transfer at its interfaces, but also enhances the rate of K+ diffusion. Additionally, potassium-ion capacitors based on this novel anode are able to attain an energy density up to 162 Wh kg-1 and âˆ¼ 96 % capacity retention after 3000 cycles at 10 A/g.The demonstrated design rule combining morphological and structural engineering strategies sheds light on the development of advanced electrodes for high performance potassium-based energy storage devices.

13.
Adv Mater ; 36(21): e2312927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373357

RESUMO

All-solid-state lithium batteries (ASSLBs) face critical challenges of low cathode loading and poor rate performances, which handicaps their energy/power densities. The widely-accepted aim of high ionic conductivity and low interfacial resistance seems insufficient to overcome these challenges. Here, it is revealed that an efficient ion percolating network in the cathode exerts a more critical influence on the electrochemical performance of ASSLBs. By constructing vertical alignment of Li0.35La0.55TiO3 nanowires (LLTO NWs) in solid-state cathode through magnetic manipulation, the ionic conductivity of the cathode increases twice compared with the cathode consisted of randomly distributed LLTO NWs. The all-solid-state LiFePO4/Li cells using poly(ethylene oxide) as the electrolyte is able to deliver high capacities of 151 mAh g-1 (2 C) and 100 mAh g-1 (5 C) at 60 °C, and a room-temperature capacity of 108 mAh g-1 can be achieved at a charging rate of 2 C. Furthermore, the cell can reach a high areal capacity of 3 mAh cm-2 even with a practical LFP loading of 20 mg cm-2. The universality of this strategy is also presented showing the demonstration in LiNi0.8Co0.1Mn0.1O2 cathodes. This work offers new pathways for designing ASSLBs with improved energy/power densities.

14.
Nanoscale ; 15(48): 19629-19637, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38018883

RESUMO

Growing energy and environmental challenges have imposed higher requirements for the development of novel multifunctional energy storage and energy-saving devices. Electrochromic devices having similar configurations and working mechanisms with secondary batteries exhibit promising applications in dual-functional electrochromic-energy storage (ECES) devices. Electrochromic Prussian blue (PB) as typical battery cathodes are of great interest for ECES devices although they suffer from poor stability and limited capacity. In this study, a transparent metal oxide (NiO nanosheets) interlayer was incorporated to enhance the structural stability and capacity of PB while offering enlarged optical modulation (ΔT) and accelerated switching kinetics in the NiO/PB film. Impressively, the NiO/PB nanocomposite film exhibited a high areal capacity of 50 mA h m-2 and excellent electrochemical stability, simultaneously manifesting a large ΔT (73.2% at 632.8 nm), fast switching time (tc = 1.4 s, tb = 2.6 s) and higher coloration efficiency (CE = 54.9 cm2 C-1), surpassing those of the bare PB film (ΔT = 69.1% at 632.8 nm, tc = 1.6 s, tb = 4.1 s, CE = 50.9 cm2 C-1). Finally, a prototype zinc anode-based electrochromic device assembled with NiO/PB nanocomposite film exhibited a self-bleaching function and ΔT retention of up to 92% after 1000 cycles, and a 100 cm2 large area device was also demonstrated for high performance. Such a transparent metal oxide interlayer has enabled the construction of durable and fast-switching dual-functional zinc anode-based electrochromic devices and will inspire more efforts in designing novel multifunctional ECES devices.

15.
Heliyon ; 9(4): e14897, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095946

RESUMO

Background and aims: Adolescents, who are undergoing brain changes, are vulnerable to many online risks in their use or overuse of digital technology. Parental media mediation (a set of practices parents use to guide children's media use and to reduce potential negative consequences of children from media) is considered an important way to help regulate and reduce adolescents' use or problematic use of digital media and protect them from online risks. However, previous studies have shown controversial results. These controversial results reflect a reproducibility crisis in psychological science due to selective reporting, selective analysis, and inadequate description of the conditions necessary to obtain results. Methods: To address this issue and reveal the authentic effect of parental media mediation strategies, this study presented the results of a specification curve analysis of 1176 combinations indicating the longitudinal effect of parental media mediation on adolescent smartphone use or problematic use. A total of 2154 parent-adolescent dyads (adolescents' ages ranged from 9 to 18, the average age was 12.13 ± 2.20, and 817 of the adolescents were male) participated in two waves of measurements. Results: The results showed that of the 12 parental media mediations, joint parental use for learning had the greatest effect in reducing future smartphone use or problematic use among adolescents. Overall, none of the parental media mediations had a substantial effect in reducing future smartphone use or problematic use among adolescents. Discussion and conclusions: The ineffectiveness of parental media mediation poses a challenge for researchers, the public, and policy-makers. More exploration is needed in the search of effective parental media mediations for adolescents.

16.
J Colloid Interface Sci ; 652(Pt A): 590-598, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611468

RESUMO

Zinc ion hybrid capacitors (ZIHCs) are encouraging energy storage devices for large-scale applications. Nevertheless, the electrochemical performance of ZIHCs is often limited by the cathode materials which show low energy density and rate capability practically. One of the efficient strategies to overcome these challenges is the development of advanced carbon cathode materials with abundant physi/chemisorption sites. Herein, we develop a sulfate template strategy to prepare sulfur and oxygen doped carbon nanosheets (SOCNs) as a potential cathode active material for ZIHCs. The as-prepared SOCNs exhibit porous architectures with a large surface area of 1877 m2 g-1, substantial structural defects, and high heteroatom-doped contents (O: 7.9 at%, S: 0.7 at%). These exceptional features are vital to enhancing Zn ion storage. Consequently, the SOCN cathode shows a high capacity of 151 mAh g-1 at 0.1 A g-1, high cycle stability with 83% capacity retention at 5 A g-1 after 4000 cycles, and a superior energy density of 103.1 Wh kg-1. We also investigate the dynamic adsorption/desorption behaviors of Zn ions and anions of the ZIHCs carbon electrodes during the process of charge and discharge by ex-situ experiments. This work highlights the significance of the integration with a large specific surface area and bountiful heteroatoms in carbon electrodes for achieving high-performance ZIHCs.

17.
Small Methods ; 7(11): e2300714, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541666

RESUMO

Porous carbon is the most promising cathode material for Zn-ion hybrid capacitors (ZIHCs), but is limited by insufficient active adsorption sites and slow ion diffusion kinetics during charge storage. Herein, a pore construction-pore expansion strategy for synthesizing multi-channel hollow carbon nanofibers (MCHCNF) is proposed, in which the sacrificial template-induced multi-channel structure eliminates the diffusion barrier for enhancing ion diffusion kinetics, and the generated ultrahigh surface area and high-density defective structures effectively increase the quantity of active sites for charge storage. Additionally, a graphene-like shell structure formed on the carbon nanofiber surface facilitates fast electron transport, and the highly matchable pore size of MCHCNF with electrolyte-ions favors the accommodation of charge carriers. These advantages lead to the optimized ZIHCs exhibit high capacity (191.4 mAh g-1 ), high energy (133.1 Wh kg-1 ), along with outstanding cycling stability (93.0% capacity retention over 15000 cycles). Systematic ex situ characterizations reveal that the dual-adsorption of anions and cations synergistically ensures the outstanding electrochemical performance, highlighting the importance of the highly-developed porous structure of MCHCNF. This work not only provides a promising strategy for improving the capacitive capability of porous materials but also sheds light on charge storage mechanisms and rational design for advanced energy storage devices.

18.
Small Methods ; : e2301355, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072620

RESUMO

Hard-soft carbon hybrid materials, harvesting the expanded interlayer spacing of hard carbon and the high conductivity of soft carbon, hold great promise as anode materials for potassium-ion batteries, but efficient and precise structural control remains a major challenge. Herein, hollow porous bowl-like hard-soft carbon hybrid materials (BHSCs) are facilely synthesized by an in situ hard-template strategy. It is found that the outer and inner walls of the hard carbon bowls are uniformly wrapped by graphene-like soft carbon, which accelerates electron transport and promotes the insertion of potassium ions. Finite element simulation further reveals that the soft-hard-soft carbon shell structure releases stress during the insertion of potassium ions. As a result, BHSC anode exhibits an extraordinary rate capability (209 mAh g-1 at 10 A g-1 ) and excellent cycle stability with a capacity of 208 mAh g-1 after 5000 cycles at 2 A g-1 . Impressively, the as-assembled potassium-ion hybrid capacitor based on BHSC anode delivers a great energy/power density (116 Wh kg-1 /12980 W kg-1 ) and outstanding capacity retention of 83% after 8000 cycles. This work provides guidance for rational structural design of hard-soft carbon hybrid materials to improve their potassium-ion storage performance.

19.
Comput Biol Med ; 158: 106832, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037148

RESUMO

BACKGROUND AND OBJECTIVE: The molecular dynamics (MD) simulation is a powerful tool for researching how cancer patients are treated. The efficiency of many factors may be predicted using this approach in great detail and with atomic accuracy. METHODS: The MD simulation method was used to investigate the impact of porosity and the number of cancer cells on the atomic behavior of cancer cells during the hematogenous spread. In order to examine the stability of simulated structures, temperature and potential energy (PE) values are used. To evaluate how cell structure has changed, physical parameters such as gyration radius, interaction force, and interaction energy are also used. RESULTS: The findings demonstrate that the samples' gyration radius, interaction energy, and interaction force rose from 41.33 Å, -551.38 kcal/mol, and -207.10 kcal/mol Å to 49.49, -535.94 kcal/mol, and -190.05 kcal/mol Å, respectively, when the porosity grew from 0% to 5%. Also, the interaction energy and force in the samples fell from -551.38 kcal/mol and -207.10 kcal/mol to -588.03 kcal/mol and -237.81 kcal/mol Å, and the amount of gyration radius reduced from 41.33 to 37.14 Å as the number of cancer cells rose from 1 to 5 molecules. The strength and stability of the simulated samples will improve when the radius of gyration is decreased. CONCLUSIONS: Therefore, high accumulation of cancer cells will make them resistant to atomic collapse. It is expected that the results of this simulation should be used to optimize cancer treatment processes further.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Porosidade , Simulação de Acoplamento Molecular
20.
J Colloid Interface Sci ; 647: 296-305, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37262992

RESUMO

Constructing carbon electrodes with abundant heteroatoms and appropriate graphitic interlayer spacing remains a major challenge for achieving high gravimetric and volumetric potassium storage capacities with fast kinetics. Herein, we constructed 3D graphene-like N, F dual-doped carbon sheets induced by Ni template (N, F-CNS-Ni) with dense structure and rich active sites, providing a promising approach to address the facing obstacles. Highly reversible K-ion insertion/extraction is realized in the graphitic carbon structure, and K-adsorption capability is enhanced by introducing N/F heteroatoms. As a result, the N, F-CNS-Ni electrode exhibits ultrahigh gravimetric and volumetric capacities of 404.5 mA h g-1 and 281.3 mA h cm-3 at 0.05 A/g, respectively, and a superb capacity of 259.3 mA h g-1 with a capacity retention ratio of 90 % even after 600 cycles at 5 A/g. This work presents a simple Ni-based template method to prepare graphene-like carbon nanosheets with high packing density and rich heteroatoms, and offers mechanism insight for achieving superior K-ion storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA