Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cell ; 151(2): 267-77, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23022319

RESUMO

DNA polymerases can only synthesize nascent DNA from single-stranded DNA (ssDNA) templates. In bacteria, the unwinding of parental duplex DNA is carried out by the replicative DNA helicase (DnaB) that couples NTP hydrolysis to 5' to 3' translocation. The crystal structure of the DnaB hexamer in complex with GDP-AlF(4) and ssDNA reported here reveals that DnaB adopts a closed spiral staircase quaternary structure around an A-form ssDNA with each C-terminal domain coordinating two nucleotides of ssDNA. The structure not only provides structural insights into the translocation mechanism of superfamily IV helicases but also suggests that members of this superfamily employ a translocation mechanism that is distinct from other helicase superfamilies. We propose a hand-over-hand mechanism in which sequential hydrolysis of NTP causes a sequential 5' to 3' movement of the subunits along the helical axis of the staircase, resulting in the unwinding of two nucleotides per subunit.


Assuntos
DnaB Helicases/química , Geobacillus stearothermophilus/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , DnaB Helicases/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Estrutura Terciária de Proteína
2.
J Biol Chem ; 300(7): 107475, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879008

RESUMO

Photosystem II (PSII) is the water-plastoquinone photo-oxidoreductase central to oxygenic photosynthesis. PSII has been extensively studied for its ability to catalyze light-driven water oxidation at a Mn4CaO5 cluster called the oxygen-evolving complex (OEC). Despite these efforts, the complete reaction mechanism for water oxidation by PSII is still heavily debated. Previous mutagenesis studies have investigated the roles of conserved amino acids, but these studies have lacked a direct structural basis that would allow for a more meaningful interpretation. Here, we report a 2.14-Å resolution cryo-EM structure of a PSII complex containing the substitution Asp170Glu on the D1 subunit. This mutation directly perturbs a bridging carboxylate ligand of the OEC, which alters the spectroscopic properties of the OEC without fully abolishing water oxidation. The structure reveals that the mutation shifts the position of the OEC within the active site without markedly distorting the Mn4CaO5 cluster metal-metal geometry, instead shifting the OEC as a rigid body. This shift disturbs the hydrogen-bonding network of structured waters near the OEC, causing disorder in the conserved water channels. This mutation-induced disorder appears consistent with previous FTIR spectroscopic data. We further show using quantum mechanics/molecular mechanics methods that the mutation-induced structural changes can affect the magnetic properties of the OEC by altering the axes of the Jahn-Teller distortion of the Mn(III) ion coordinated to D1-170. These results offer new perspectives on the conserved water channels, the rigid body property of the OEC, and the role of D1-Asp170 in the enzymatic water oxidation mechanism.

3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34937700

RESUMO

Photosystem II (PSII) enables global-scale, light-driven water oxidation. Genetic manipulation of PSII from the mesophilic cyanobacterium Synechocystis sp. PCC 6803 has provided insights into the mechanism of water oxidation; however, the lack of a high-resolution structure of oxygen-evolving PSII from this organism has limited the interpretation of biophysical data to models based on structures of thermophilic cyanobacterial PSII. Here, we report the cryo-electron microscopy structure of PSII from Synechocystis sp. PCC 6803 at 1.93-Å resolution. A number of differences are observed relative to thermophilic PSII structures, including the following: the extrinsic subunit PsbQ is maintained, the C terminus of the D1 subunit is flexible, some waters near the active site are partially occupied, and differences in the PsbV subunit block the Large (O1) water channel. These features strongly influence the structural picture of PSII, especially as it pertains to the mechanism of water oxidation.


Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Proteína do Fotossistema II/ultraestrutura , Synechocystis/química , Proteínas de Bactérias/metabolismo , Conformação Proteica
4.
Biochemistry ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037205

RESUMO

Recent resolution advancement of in situ cryo-electron tomography (cryo-ET) and cryo-electron microscopy (cryo-EM) enables us to visualize large enzymes-in-action in atomic detail in their native environments inside living cells, such as photosystem II (PSII) and the ribosome. A variety of crystallographic and cryo-EM structures of PSII have been published for the purified PSII dimeric core complexes by itself, in supercomplexes with photosystem I (PSI) and light-harvesting complexes (LHC), and in megacomplexes with phycobilisome (PBS). In the latter case, two or five copies of asymmetric dimeric PSII molecules are present in highly asymmetric environments that differ from other 2-fold symmetric structures. Previous systematic analysis of X-ray free-electron laser (XFEL) crystal structures of PSII has shown different degrees of composition heterogeneity of metal ion cofactor bound at the oxygen-evolving center (OEC), including between two monomers of the same PSII dimer. This study analyzed the metal ions bound at four OECs in two asymmetric dimeric PSII molecules within in situ cryo-ET structures reported for an asymmetric PBS-PSII-PSI-LHC megacomplex determined in a living organism without purification and shows that composition heterogeneity with reduced metal ion occupancies at the OEC of PSII is a general phenomenon. This finding could have profound implications for spectroscopic interpretations of unpurified PSII samples.

5.
J Chem Inf Model ; 64(7): 2586-2593, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38054243

RESUMO

Metalloproteins require metal ions as cofactors to catalyze specific reactions with remarkable efficiency and specificity. In various electron transfer reactions, metals in the active sites change their oxidation states to facilitate the biochemical reactions. Cryogenic electron microscopy, X-ray, and X-ray free electron laser (XFEL) crystallography are used to image metalloproteins to understand the reaction mechanisms. However, radiation damage in cryoEM and X-ray crystallography, and the challenge of generating homogeneous crystals and keeping the appropriate experimental conditions for all the crystals in XFEL crystallography, may alter the oxidation states. Here, we build machine learning models trained on a large data set from the Cambridge Crystallographic Data Center to evaluate the metal oxidation states. The models yield high accuracy scores (from 82% to 94%) for all metals in the small molecules. Then, they were used to predict the oxidation states of more than 30 000 metal clusters in metalloproteins with Fe, Mn, Co, and Cu in their active sites. We found that most of the metals exist in the lower oxidation states (Fe2+ 77%, Mn2+ 85%, Co2+ 65%, and Cu+ 64%), and these populations correlate with the standard reduction potentials of the metal ions. Furthermore, we found no clear correlation between these populations and the resolution of the structures, which suggests no significant dependence of these predictions on the resolution. Our models represent a valuable tool for evaluating the oxidation states of the metals in metalloproteins imaged with different techniques. The data files and the machine learning code are available in a public GitHub repository: https://github.com/mamin03/OxitationStatesMetalloprotein.git.


Assuntos
Metaloproteínas , Metaloproteínas/química , Metais/química , Oxirredução , Cristalografia por Raios X , Íons
6.
BMC Infect Dis ; 24(1): 153, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297221

RESUMO

BACKGROUND: Current diagnoses of urinary tract infection (UTI) by standard urine culture (SUC) has significant limitations in sensitivity, especially for fastidious organisms, and the ability to identify organisms in polymicrobial infections. The significant rate of both SUC "negative" or "mixed flora/contamination" results in UTI cases and the high prevalence of asymptomatic bacteriuria indicate the need for an accurate diagnostic test to help identify true UTI cases. This study aimed to determine if infection-associated urinary biomarkers can differentiate definitive UTI cases from non-UTI controls. METHODS: Midstream clean-catch voided urine samples were collected from asymptomatic volunteers and symptomatic subjects ≥ 60 years old diagnosed with a UTI in a urology specialty setting. Microbial identification and density were assessed using a multiplex PCR/pooled antibiotic susceptibility test (M-PCR/P-AST) and SUC. Three biomarkers [neutrophil gelatinase-associated lipocalin (NGAL), and Interleukins 8 and 1ß (IL-8, and IL-1ß)] were also measured via enzyme-linked immunosorbent assay (ELISA). Definitive UTI cases were defined as symptomatic subjects with a UTI diagnosis and positive microorganism detection by SUC and M-PCR, while definitive non-UTI cases were defined as asymptomatic volunteers. RESULTS: We observed a strong positive correlation (R2 > 0.90; p < 0.0001) between microbial density and the biomarkers NGAL, IL-8, and IL-1ß for symptomatic subjects. Biomarker consensus criteria of two or more positive biomarkers had sensitivity 84.0%, specificity 91.2%, positive predictive value 93.7%, negative predictive value 78.8%, accuracy 86.9%, positive likelihood ratio of 9.58, and negative likelihood ratio of 0.17 in differentiating definitive UTI from non-UTI cases, regardless of non-zero microbial density. NGAL, IL-8, and IL-1ß showed a significant elevation in symptomatic cases with positive microbe identification compared to asymptomatic cases with or without microbe identification. Biomarker consensus exhibited high accuracy in distinguishing UTI from non-UTI cases. CONCLUSION: We demonstrated that positive infection-associated urinary biomarkers NGAL, IL-8, and IL-1ß, in symptomatic subjects with positive SUC and/or M-PCR results was associated with definitive UTI cases. A consensus criterion with ≥ 2 of the biomarkers meeting the positivity thresholds showed a good balance of sensitivity (84.0%), specificity (91.2%), and accuracy (86.9%). Therefore, this biomarker consensus is an excellent supportive diagnostic tool for resolving the presence of active UTI, particularly if SUC and M-PCR results disagree.


Assuntos
Interleucina-8 , Infecções Urinárias , Humanos , Pessoa de Meia-Idade , Lipocalina-2 , Consenso , Curva ROC , Infecções Urinárias/diagnóstico , Biomarcadores , Sensibilidade e Especificidade
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785601

RESUMO

Cis-acting RNA elements are crucial for the regulation of polyadenylated RNA stability. The element for nuclear expression (ENE) contains a U-rich internal loop flanked by short helices. An ENE stabilizes RNA by sequestering the poly(A) tail via formation of a triplex structure that inhibits a rapid deadenylation-dependent decay pathway. Structure-based bioinformatic studies identified numerous ENE-like elements in evolutionarily diverse genomes, including a subclass containing two ENE motifs separated by a short double-helical region (double ENEs [dENEs]). Here, the structure of a dENE derived from a rice transposable element (TWIFB1) before and after poly(A) binding (∼24 kDa and ∼33 kDa, respectively) is investigated. We combine biochemical structure probing, small angle X-ray scattering (SAXS), and cryo-electron microscopy (cryo-EM) to investigate the dENE structure and its local and global structural changes upon poly(A) binding. Our data reveal 1) the directionality of poly(A) binding to the dENE, and 2) that the dENE-poly(A) interaction involves a motif that protects the 3'-most seven adenylates of the poly(A). Furthermore, we demonstrate that the dENE does not undergo a dramatic global conformational change upon poly(A) binding. These findings are consistent with the recently solved crystal structure of a dENE+poly(A) complex [S.-F. Torabi et al., Science 371, eabe6523 (2021)]. Identification of additional modes of poly(A)-RNA interaction opens new venues for better understanding of poly(A) tail biology.


Assuntos
Poliadenilação , Estabilidade de RNA , RNA/química , Elementos de DNA Transponíveis , Células HEK293 , Humanos , Motivos de Nucleotídeos , Oryza/genética , RNA/metabolismo
8.
BMC Med Inform Decis Mak ; 24(1): 41, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331788

RESUMO

In recent years, corneal refractive surgery has been widely used in clinics as an effective means to restore vision and improve the quality of life. When choosing myopia-refractive surgery, it is necessary to comprehensively consider the differences in equipment and technology as well as the specificity of individual patients, which heavily depend on the experience of ophthalmologists. In our study, we took advantage of machine learning to learn about the experience of ophthalmologists in decision-making and assist them in the choice of corneal refractive surgery in a new case. Our study was based on the clinical data of 7,081 patients who underwent corneal refractive surgery between 2000 and 2017 at the Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. Due to the long data period, there were data losses and errors in this dataset. First, we cleaned the data and deleted the samples of key data loss. Then, patients were divided into three groups according to the type of surgery, after which we used SMOTE technology to eliminate imbalance between groups. Six statistical machine learning models, including NBM, RF, AdaBoost, XGBoost, BP neural network, and DBN were selected, and a ten-fold cross-validation and grid search were used to determine the optimal hyperparameters for better performance. When tested on the dataset, the multi-class RF model showed the best performance, with agreement with ophthalmologist decisions as high as 0.8775 and Macro F1 as high as 0.8019. Furthermore, the results of the feature importance analysis based on the SHAP technique were consistent with an ophthalmologist's practical experience. Our research will assist ophthalmologists in choosing appropriate types of refractive surgery and will have beneficial clinical effects.


Assuntos
Miopia , Procedimentos Cirúrgicos Refrativos , Humanos , Acuidade Visual , Qualidade de Vida , Miopia/cirurgia , Aprendizado de Máquina
9.
Biophys J ; 122(24): 4635-4644, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37936350

RESUMO

A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Simulação de Dinâmica Molecular , Hidrogênio/metabolismo , Amidas
10.
J Biol Chem ; 298(1): 101408, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793839

RESUMO

Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.


Assuntos
Ferredoxinas , Complexo de Proteína do Fotossistema I , Synechococcus , Clorofila/metabolismo , Ferredoxinas/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Synechococcus/metabolismo
11.
J Biol Chem ; 298(1): 101424, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801554

RESUMO

Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema II , Synechococcus , Clorofila/metabolismo , Luz , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechococcus/metabolismo , Água/metabolismo
12.
Photosynth Res ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749456

RESUMO

Chlorophylls and bacteriochlorophylls are the primary pigments used by photosynthetic organisms for light harvesting, energy transfer, and electron transfer. Many molecular structures of (bacterio)chlorophyll-containing protein complexes are available, some of which contain mixtures of different (bacterio)chlorophyll types. Differentiating these, which sometimes are structurally similar, is challenging but is required for leveraging structural data to gain functional insight. The reaction center complex from Chloroacidobacterium thermophilum has a hybrid (bacterio)chlorophyll antenna system containing both chlorophyll a and bacteriochlorophyll a molecules. The recent availability of its cryogenic electron microscopy (cryo-EM) structure provides an opportunity for a quantitative analysis of their identities and chemical environments. Here, we describe a theoretical basis for differentiating chlorophyll a and bacteriochlorophyll a in a cryo-EM map, and apply the approach to the experimental cryo-EM maps of the (bacterio)chlorophyll sites of the chloroacidobacterial reaction center. The comparison reveals that at ~ 2.2-Å resolution, chlorophyll a and bacteriochlorophyll a are easily distinguishable, but the orientation of the bacteriochlorophyll a acetyl moiety is not; however, the latter can confidently be assigned by identifying a hydrogen bond donor from the protein environment. This study reveals the opportunities and challenges in assigning (bacterio)chlorophyll types in structural biology, the accuracy of which is vital for downstream investigations.

13.
Biochemistry ; 61(17): 1723-1734, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998361

RESUMO

Human polypyrimidine-binding splicing factor (PSF/SFPQ) is a tumor suppressor protein that regulates the gene expression of several proto-oncogenes and binds to the 5'-polyuridine negative-sense template (5'-PUN) of some RNA viruses. The activity of PSF is negatively regulated by long-noncoding RNAs, human metastasis associated in lung adenocarcinoma transcript-1 and murine virus-like 30S transcript-1 (VL30-1). PSF is a 707-amino acid protein that has a DNA-binding domain and two RNA recognition motifs (RRMs). Although the structure of the apo-truncated PSF is known, how PSF recognizes RNA remains elusive. Here, we report the 2.8 Å and 3.5 Å resolution crystal structures of a biologically active truncated construct of PSF (sPSF, consisting of residues 214-598) alone and in a complex with a 30mer fragment of VL30-1 RNA, respectively. The structure of the complex reveals how the 30mer RNA is recognized at two U-specific induced-fit binding pockets, located at the previously unrecognized domain-swapped, inter-subunit RRM1 (of the first subunit)-RRM2 (of the second subunit) interfaces that do not exist in the apo structure. Thus, the sPSF dimer appears to have two conformations in solution: one in a low-affinity state for RNA binding, as seen in the apo-structure, and the other in a high-affinity state for RNA binding, as seen in the sPSF-RNA complex. PSF undergoes an all or nothing transition between having two or no RNA-binding pockets. We predict that the RNA binds with a high degree of positive cooperativity. These structures provide an insight into a new regulatory mechanism that is likely involved in promoting malignancies and other human diseases.


Assuntos
RNA Longo não Codificante , Proteínas de Ligação a RNA , Animais , Humanos , Camundongos , Fator de Processamento Associado a PTB/genética , Fator de Processamento Associado a PTB/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
14.
Biochemistry ; 61(6): 424-432, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35199520

RESUMO

A minimal replication-transcription complex (RTC) of SARS-CoV-2 for synthesis of viral RNAs includes the nsp12 RNA-dependent RNA polymerase and two nsp8 RNA primase subunits for de novo primer synthesis, one nsp8 in complex with its accessory nsp7 subunit and the other without it. The RTC is responsible for faithfully copying the entire (+) sense viral genome from its first 5'-end to the last 3'-end nucleotides through a replication-intermediate (RI) template. The single-stranded (ss) RNA template for the RI is its 33-nucleotide 3'-poly(A) tail adjacent to a well-characterized secondary structure. The ssRNA template for viral transcription is a 5'-UUUAU-3' next to stem-loop (SL) 1'. We analyze the electrostatic potential distribution of the nsp8 subunit within the RTC around the template strand of the primer/template (P/T) RNA duplex in recently published cryo-EM structures to address the priming reaction using the viral poly(A) template. We carried out molecular dynamics (MD) simulations with a P/T RNA duplex, the viral poly(A) template, or a generic ssRNA template. We find evidence that the viral poly(A) template binds similarly to the template strand of the P/T RNA duplex within the RTC, mainly through electrostatic interactions, providing new insights into the priming reaction by the nsp8 subunit within the RTC, which differs significantly from the existing proposal of the nsp7/nsp8 oligomer formed outside the RTC. High-order oligomerization of nsp8 and nsp7 for SARS-CoV observed outside the RTC of SARS-CoV-2 is not found in the RTC and not likely to be relevant to the priming reaction.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
15.
Biochemistry ; 61(9): 785-794, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420793

RESUMO

Many bacteria possess type-II immunity against invading phages or plasmids known as the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) system to detect and degrade the foreign DNA sequences. The Cas9 protein has two endonucleases responsible for double-strand breaks (the HNH domain for cleaving the target strand of DNA duplexes and RuvC domain for the nontarget strand, respectively) and a single-guide RNA-binding domain where the RNA and target DNA strands are base-paired. Three engineered single Lys-to-Ala HNH mutants (K810A, K848A, and K855A) exhibit an enhanced substrate specificity for cleavage of the target DNA strand. We report in this study that in the wild-type (wt) enzyme, D835, Y836, and D837 within the Y836-containing loop (comprising E827-D837) adjacent to the catalytic site have uncharacterizable broadened 1H15N nuclear magnetic resonance (NMR) features, whereas remaining residues in the loop have different extents of broadened NMR spectra. We find that this loop in the wt enzyme exhibits three distinct conformations over the duration of the molecular dynamics simulations, whereas the three Lys-to-Ala mutants retain only one conformation. The versatility of multiple alternate conformations of this loop in the wt enzyme could help to recruit noncognate DNA substrates into the HNH active site for cleavage, thereby reducing its substrate specificity relative to the three mutants. Our study provides further experimental and computational evidence that Lys-to-Ala substitutions reduce dynamics of proteins and thus increase their stability.


Assuntos
Sistemas CRISPR-Cas , Endonucleases , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/química , DNA/genética , Endonucleases/química
16.
Biochemistry ; 61(18): 1966-1973, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044776

RESUMO

Remdesivir is an adenosine analogue that has a cyano substitution in the C1' position of the ribosyl moiety and a modified base structure to stabilize the linkage of the base to the C1' atom with its strong electron-withdrawing cyano group. Within the replication-transcription complex (RTC) of SARS-CoV-2, the RNA-dependent RNA polymerase nsp12 selects remdesivir monophosphate (RMP) over adenosine monophosphate (AMP) for nucleotide incorporation but noticeably slows primer extension after the added RMP of the RNA duplex product is translocated by three base pairs. Cryo-EM structures have been determined for the RTC with RMP at the nucleotide-insertion (i) site or at the i + 1, i + 2, or i + 3 sites after product translocation to provide a structural basis for a delayed-inhibition mechanism by remdesivir. In this study, we applied molecular dynamics (MD) simulations to extend the resolution of structures to the measurable maximum that is intrinsically limited by MD properties of these complexes. Our MD simulations provide (i) a structural basis for nucleotide selectivity of the incoming substrates of remdesivir triphosphate over adenosine triphosphate and of ribonucleotide over deoxyribonucleotide, (ii) new detailed information on hydrogen atoms involved in H-bonding interactions between the enzyme and remdesivir, and (iii) direct information on the catalytically active complex that is not easily captured by experimental methods. Our improved resolution of interatomic interactions at the nucleotide-binding pocket between remedesivir and the polymerase could help to design a new class of anti-SARS-CoV-2 inhibitors.


Assuntos
Trifosfato de Adenosina , Antivirais , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Alanina/química , Antivirais/química , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus , Desoxirribonucleotídeos , Hidrogênio , Nucleotídeos , RNA Viral/genética , Ribonucleotídeos , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
17.
J Struct Biol ; 214(4): 107902, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202310

RESUMO

The atomic coordinates derived from cryo-electron microscopy (cryo-EM) maps can be inaccurate when the voxel scaling factors are not properly calibrated. Here, we describe a method for correcting relative voxel scaling factors between pairs of cryo-EM maps for the same or similar structures that are expanded or contracted relative to each other. We find that the correction of scaling factors reduces the amplitude differences of Fourier-inverted structure factors from voxel-rescaled maps by up to 20-30%, as shown by two cryo-EM maps of the SARS-CoV-2 spike protein measured at pH 4.0 and pH 8.0. This allows for the calculation of the difference map after properly scaling, revealing differences between the two structures for individual amino acid residues. Unexpectedly, the analysis uncovers two previously overlooked differences of amino acid residues in structures and their local structural changes. Furthermore, we demonstrate the method as applied to two cryo-EM maps of monomeric apo-photosystem II from the cyanobacteria Synechocystis sp. PCC 6803 and Thermosynechococcus elongatus. The resulting difference maps reveal many changes in the peripheral transmembrane PsbX subunit between the two species.


Assuntos
COVID-19 , Synechocystis , Humanos , Microscopia Crioeletrônica , SARS-CoV-2
18.
Photosynth Res ; 152(2): 167-175, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322325

RESUMO

The oxygen-evolving complex (OEC) of photosystem II (PSII) cycles through redox intermediate states Si (i = 0-4) during the photochemical oxidation of water. The S2 state involves an equilibrium of two isomers including the low-spin S2 (LS-S2) state with its characteristic electron paramagnetic resonance (EPR) multiline signal centered at g = 2.0, and a high-spin S2 (HS-S2) state with its g = 4.1 EPR signal. The relative intensities of the two EPR signals change under experimental conditions that shift the HS-S2/LS-S2 state equilibrium. Here, we analyze the effect of glycerol on the relative stability of the LS-S2 and HS-S2 states when bound at the narrow channel of PSII, as reported in an X-ray crystal structure of cyanobacterial PSII. Our quantum mechanics/molecular mechanics (QM/MM) hybrid models of cyanobacterial PSII show that the glycerol molecule perturbs the hydrogen-bond network in the narrow channel, increasing the pKa of D1-Asp61 and stabilizing the LS-S2 state relative to the HS-S2 state. The reported results are consistent with the absence of the HS-S2 state EPR signal in native cyanobacterial PSII EPR spectra and suggest that the narrow water channel hydrogen-bond network regulates the relative stability of OEC catalytic intermediates during water oxidation.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Espectroscopia de Ressonância de Spin Eletrônica , Glicerol , Hidrogênio , Oxirredução , Oxigênio , Água
19.
Nat Chem Biol ; 16(5): 493-496, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32066969

RESUMO

Nonribosomal depsipeptides are natural products composed of amino and hydroxy acid residues. The hydroxy acid residues often derive from α-keto acids, reduced by ketoreductase domains in the depsipeptide synthetases. Biochemistry and structures reveal the mechanism of discrimination for α-keto acids and a remarkable architecture: flanking intact adenylation and ketoreductase domains are sequences separated by >1,100 residues that form a split 'pseudoAsub' domain, structurally important for the depsipeptide module's synthetic cycle.


Assuntos
Depsipeptídeos/biossíntese , Cetoácidos/química , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Oxirredutases do Álcool/química , Bacillus/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X , Depsipeptídeos/química , Cetoácidos/metabolismo , Lisina/metabolismo , Peptídeo Sintases/genética , Conformação Proteica , Domínios Proteicos
20.
Health Promot Int ; 37(4)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36000530

RESUMO

Motivated by the varying effectiveness of government intervention policies to contain the COVID-19 pandemic, and the potential positive relationship between ethnolinguistic diversity and social distance, this paper aims to provide empirical evidence on the relationship between ethnolinguistic diversity and the spread of COVID-19. In particular, using global data from 113 developed and developing countries during the early stages of the pandemic (from 31 December 2019 to 8 July 2020), we have found a significant negative effect of ethnolinguistic diversity on the spread of the virus. The result is robust to alternative measures of ethnolinguistic diversity and estimator that addresses endogeneity. Moreover, we also show that the impact of ethnolinguistic diversity on the spread of COVID-19 differs in economies characterized by different levels of democracy, policy stringency on addressing COVID-19 and health expenditure.


Assuntos
COVID-19 , Doenças Transmissíveis , Governo , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA