Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 1): 44-51, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399551

RESUMO

X-ray free-electron lasers (XFELs) open a new era of X-ray based research by generating extremely intense X-ray flashes. To further improve the spectrum brightness, a self-seeding FEL scheme has been developed and demonstrated experimentally. As the next step, new-generation FELs with high repetition rates are being designed, built and commissioned around the world. A high repetition rate would significantly speed up the scientific research; however, alongside this improvement comes new challenges surrounding thermal management of the self-seeding monochromator. In this paper, a new configuration for self-seeding FELs is proposed, operated under a high repetition rate which can strongly suppress the thermal effects on the monochromator and provides a narrow-bandwidth FEL pulse. Three-dimension time-dependent simulations have been performed to demonstrate this idea. With this proposed configuration, high-repetition-rate XFEL facilities are able to generate narrow-bandwidth X-ray pulses without obvious thermal concern on the monochromators.

2.
Opt Express ; 28(8): 10928-10938, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403614

RESUMO

Coherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme. In this paper, a novel approach for characterizing the coherence time of a hard X-ray free-electron laser (FEL) is proposed and validated numerically. A phase shifter is adopted to control the correlation between X-ray and microbunched electrons. The coherence time of the FEL pulse can be extracted from the cross-correlation. Semi-analytical analysis and three-dimensional time-dependent numerical simulations are presented to elaborate the details. A coherence time of 218.2 attoseconds for 6.92 keV X-ray FEL pulses is obtained in our simulation based on the configuration of Linac Coherent Light Source. This approach provides critical temporal coherence diagnostics for X-ray FELs, and is decoupled from machine parameters, applicable for any photon energy, radiation brightness, repetition rate and FEL pulse duration.

3.
Nanoscale ; 16(13): 6596-6602, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466180

RESUMO

Aqueous Zn ion-based fiber-shaped batteries (AZFBs) with the merits of high flexibility and safety have received much attention for powering wearable electronic devices. However, the relatively low specific capacity provided by cathode materials limits their practical application. Herein, we first propose a simple strategy for fabricating high-capacity Zn-iodine fiber-shaped batteries with a high concentration electrolyte and a reduced graphene oxide fiber (GF) cathode. It was found that oxygen functional groups in the graphene sheet demonstrate strong interaction with polyiodides but hinder electron conductivity; thus, the optimal balance between the specific capacity and coulombic efficiency of the GF electrode can be a function of the surface properties at different hydrothermal temperatures. Besides, the regulated high concentration electrolyte effectively suppresses the diffusion of polyiodides, which is attributed to the constrained freedom of water. More importantly, a four-electron redox mechanism was experimentally revealed through in situ Raman spectra. As a result, this fiber-shaped battery delivers a superior high reversible capacity of 390 mA h cm-3 at 1 A cm-3, an excellent rate performance of 125.7 mA h cm-3 at a high current density of 8 A cm-3 and outstanding cycling life with 82% capacitance retention after 2500 cycles.

4.
ACS Appl Mater Interfaces ; 15(3): 4061-4070, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36625342

RESUMO

As a promising candidate for large-scale energy storage, aqueous zinc-ion batteries (ZIBs) still lack cathode materials with large capacity and high rate capability. Herein, a spherical carbon-confined nanovanadium oxynitride with a polycrystalline feature (VNxOy/C) was synthesized by the solvothermal reaction and following nitridation treatment. As a cathode material for ZIBs, it is interesting that the electrochemical performance of the VNxOy/C cathode is greatly improved after the first charging process viain situ electrochemically oxidative activation. The oxidized VNxOy/C delivers a greatly enhanced reversible capacity of 556 mAh g-1 at 0.2 A g-1 compared to the first discharge capacity of 130 mAh g-1 and a high capacity of 168 mAh g-1 even at 80 A g-1. The ex situ characterizations verify that the insertion/extraction of Zn2+ does not affect the crystal structure of oxidized VNxOy/C to promise a stable cycle life (retain 420 mAh g-1 after 1000 cycles at 10 A g-1). The experimental analysis further elucidates that charging voltage and H2O in the electrolyte are curial factors to activate VNxOy/C in that the oxygen replaces the partial nitrogen and creates abundant vacancies, inducing a conversion from VNxOy/C to VNx-mOy+2m/C and then resulting in considerably strengthened rate performance and improved Zn2+ storage capability. The study broadens the horizons of fast ion transport and is exceptionally desirable to expedite the application of high-rate ZIBs.

5.
ACS Nano ; 17(24): 25291-25300, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085605

RESUMO

The high dissolution of polyiodides and unstable interface at the anode/electrolyte severely restrict the practical applications of rechargeable aqueous Zn-iodine batteries. Herein, we develop a zinc ion-based montmorillonite (ZMT) electrolyte membrane for synergizing ion sieve and solvation regulation to achieve highly stable Zn-iodine batteries. The rich M-O band and special cation-selective transport channel in ZMT locally tailor the solvation sheath around Zn2+ and therefore achieve high transference number (t+ = 0.72), benefiting for uniform and reversible deposition/stripping of Zn. Meanwhile, the mechanisms for three-step polyiodide generation and shuttle-induced Zn corrosion are highlighted by in situ characterization techniques. It is confirmed that the strong chemical adsorption between O atoms in ZMT and polyiodides species is the key to effectively inhibit the shuffle effect and side reactions. Consequently, the ZMT-based Zn-iodine battery delivers a high capacity of 0.45 mAh cm-2 at 1 mA cm-2 with a much improved Coulombic efficiency of 99.5% and outstanding capacity retention of 95% after 13 500 cycles at 10 mA cm-2. Moreover, owing to its high durability and chemical inertness and structural stability, ZMT-based electrolyte membranes can be recycled and applied in double-sided pouch cells, delivering a high areal capacity of 2.4 mAh cm-2 at 1 mA cm-2.

6.
Microbiol Spectr ; 9(3): e0125121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851139

RESUMO

The type III secretion (T3S) injectisome is a syringe-like protein-delivery nanomachine widely utilized by Gram-negative bacteria. It can deliver effector proteins directly from bacteria into eukaryotic host cells, which is crucial for the bacterial-host interaction. Intracellular pathogen Salmonella enterica serovar Typhimurium encodes two sets of T3S injectisomes from Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2), which are critical for its host invasion and intracellular survival, respectively. The inner membrane export gate protein, SctV (InvA in SPI-1 and SsaV in SPI-2), is the largest component of the injectisome and is essential for assembly and function of T3SS. Here, we report the 2.11 Å cryo-EM structure of the SsaV cytoplasmic domain (SsaVC) in the context of a full-length SctV chimera consisting of the transmembrane region of InvA, the linker of SsaV (SsaVL) and SsaVC. The structural analysis shows that SsaVC exists in a semi-open state and SsaVL exhibits two major orientations, implying a highly dynamic process of SsaV for the substrate selection and secretion in a full-length context. A biochemical assay indicates that SsaVL plays an essential role in maintaining the nonameric state of SsaV. This study offers near atomic-level insights into how SsaVC and SsaVL facilitate the assembly and function of SsaV and may lead to the development of potential anti-virulence therapeutics against T3SS-mediated bacterial infection. IMPORTANCE Type III secretion system (T3SS) is a multicomponent nanomachine and a critical virulence factor for a wide range of Gram-negative bacterial pathogens. It can deliver numbers of effectors into the host cell to facilitate the bacterial host infection. Export gate protein SctV, as one of the engines of T3SS, is at the center of T3SS assembly and function. In this study, we show the high-resolution atomic structure of the cytosolic domain of SctV in the nonameric state with variable linker conformations. Our first observation of conformational changes of the linker region of SctV and the semi-open state of the cytosolic domain of SctV in the full-length context further support that the substrate selection and secretion process of SctV is highly dynamic. These findings have important implications for the development of therapeutic strategies targeting SctV to combat T3SS-mediated bacterial infection.


Assuntos
Proteínas de Bactérias/metabolismo , Domínios Proteicos/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III/fisiologia , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Ilhas Genômicas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes de Fusão/genética , Virulência/genética , Fatores de Virulência/genética
7.
Sci Rep ; 10(1): 5961, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249769

RESUMO

One of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-rays and materials. Conventional optical methods, based on autocorrelation, are very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a novel method which yields a coherence time of 174.7 attoseconds for the 6.92 keV FEL pulses at the Linac Coherent Light Source. In our experiment, a phase shifter is adopted to control the cross-correlation between x-ray and microbunched electrons. This approach provides critical diagnostics for the temporal coherence of x-ray FELs and is universal for general machine parameters; applicable for wide range of photon energy, radiation brightness, repetition rate and FEL pulse duration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA