Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36440598

RESUMO

Spatiotemporal regulation of the mechanistic target of rapamycin (mTOR) pathway is pivotal for establishment of brain architecture. Dysregulation of mTOR signaling is associated with a variety of neurodevelopmental disorders. Here, we demonstrate that the UBE4B-KLHL22 E3 ubiquitin ligase cascade regulates mTOR activity in neurodevelopment. In a mouse model with UBE4B conditionally deleted in the nervous system, animals display severe growth defects, spontaneous seizures and premature death. Loss of UBE4B in the brains of mutant mice results in depletion of neural precursor cells and impairment of neurogenesis. Mechanistically, UBE4B polyubiquitylates and degrades KLHL22, an E3 ligase previously shown to degrade the GATOR1 component DEPDC5. Deletion of UBE4B causes upregulation of KLHL22 and hyperactivation of mTOR, leading to defective proliferation and differentiation of neural precursor cells. Suppression of KLHL22 expression reverses the elevated activity of mTOR caused by acute local deletion of UBE4B. Prenatal treatment with the mTOR inhibitor rapamycin rescues neurogenesis defects in Ube4b mutant mice. Taken together, these findings demonstrate that UBE4B and KLHL22 are essential for maintenance and differentiation of the precursor pool through fine-tuning of mTOR activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Encéfalo , Células-Tronco Neurais , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases , Animais , Camundongos , Encéfalo/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Epilepsia ; 63(5): 1093-1103, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247271

RESUMO

OBJECTIVE: Although previous imaging studies have reported cerebellar gray matter loss in patients with familial cortical myoclonic tremor with epilepsy (FCMTE), the corresponding white matter alterations remain unknown. We investigated white matter structural changes in FCMTE1 and compared them with clinical and electrophysiological features. METHODS: We enrolled 36 patients carrying heterozygous pathogenic intronic pentanucleotide insertions in the SAMD12 gene and 52 age- and sex-matched healthy controls. Diffusion tensor imaging-derived metrics, including fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), were calculated along with white matter voxel-based morphometry (VBM) analysis. We also examined correlations between magnetic resonance metrics and clinical and electrophysiological features. RESULTS: We detected widespread white matter reductions in MD, RD, and AD values in FCMTE1 patients, including in the commissural, projection, and association fibers. VBM analysis revealed that increases in white matter volume predominantly occurred in the right cerebellum and sagittal stratum. MD, RD, AD, and VBM analysis clearly indicated changes in the sagittal stratum. We found a positive correlation between VBM values in the right cerebellum and somatosensory-evoked potential P25-N33 amplitude. Decreased MD and AD values in the right sagittal stratum were detected in patients with versus without photophobia. SIGNIFICANCE: FCMTE is a network disorder involving a wide range of cortical and subcortical structures, including the cerebellum, thalamus, thalamocortical connections, and corticocortical connections. The right sagittal stratum is closely related with visual symptoms, especially photophobia. Our findings indicate that cerebellum and cortical hyperexcitability are closely linked, and emphasize the important role of the cerebellum in the pathophysiological mechanisms of cortical tremor.


Assuntos
Epilepsia , Substância Branca , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Epilepsias Mioclônicas , Epilepsia/patologia , Substância Cinzenta/patologia , Humanos , Fotofobia , Tremor/diagnóstico por imagem , Tremor/genética , Tremor/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
3.
Eur J Neurol ; 29(6): 1610-1618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147270

RESUMO

BACKGROUND AND PURPOSE: Recently, the pathogenic and intermediate GGC repeat expansion in NOTCH2NLC was detected in Parkinson's disease (PD). However, detailed clinical, neuroimaging, and pathological information of clinically diagnosed PD patients with pathogenic GGC repeat expansion in NOTCH2NLC remains scarce. Thus, we aimed to elucidate the clinical, neuroimaging, and pathological characteristics of PD patients carrying the pathogenic GGC repeat expansion in NOTCH2NLC. METHODS: The NOTCH2NLC GGC repeat expansion was screened in 941 sporadic PD patients and 244 unrelated probands. Comprehensive assessments were performed in three PD patients with pathogenic GGC repeat expansion in NOTCH2NLC. The repeat expansion length was estimated using CRISPR/Cas9-based targeted long-read sequencing. RESULTS: The three patients (two PD patients from Family 1 and one sporadic PD) carrying the pathogenic NOTCH2NLC expansion were reconfirmed with a diagnosis of clinically established PD. Although they lacked the typical neuronal intranuclear inclusion disease (NIID) magnetic resonance imaging (MRI) feature, the typical PD pattern of striatal dopamine transporter loss was detected. Notably, all three patients presented with systemic areflexia, and other secondary causes of polyneuropathy were excluded. Skin biopsy showed intranuclear inclusions and an absence of phosphorylated alpha-synuclein deposition in the skin nerve fibers of all three patients. CONCLUSIONS: Although these clinically diagnosed PD patients with pathogenic GGC repeat expansion in NOTCH2NLC were hardly distinguishable from idiopathic PD based on clinical course and neuroimaging features, the pathological findings indicated that their phenotype was a PD phenocopy of NIID. Systemic areflexia may be an important and unique clinical clue suggesting further genetic testing and skin biopsy examination to confirm the diagnosis of NIID in patients presenting with a PD phenocopy.


Assuntos
Doença de Parkinson , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas , Neuroimagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/patologia , Expansão das Repetições de Trinucleotídeos
4.
Eur J Neurol ; 29(2): 450-458, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750918

RESUMO

BACKGROUND AND PURPOSE: The GGC repeat expansion in the NOTCH2NLC gene has been identified as the genetic cause of neuronal intranuclear inclusion disease (NIID). Recently, this repeat expansion was also reported to be associated with essential tremor (ET). However, some patients with this repeat expansion, initially diagnosed with ET, were eventually diagnosed with NIID. Therefore, controversy remains regarding the clinical diagnosis of these expansion-positive patients presenting with tremor-dominant symptoms. This study aimed to clarify the clinical phenotype in tremor-dominant patients who have the GGC repeat expansion in the NOTCH2NLC gene. METHODS: We screened for pathogenic GGC repeat expansions in 602 patients initially diagnosed with ET and systematically re-evaluated the clinical features of the expansion-positive probands and their family members. RESULTS: Pathogenic GGC repeat expansion in the NOTCH2NLC gene was detected in 10 probands (1.66%). Seven of these probands were re-evaluated and found to have systemic areflexia, cognitive impairment, and abnormal nerve conduction, which prompted a change of diagnosis from ET to NIID. Three of the probands had typical hyperintensity in the corticomedullary junction on diffusion-weighted imaging. Intranuclear inclusions were detected in all four probands who underwent skin biopsy. CONCLUSIONS: The NIID tremor-dominant subtype can be easily misdiagnosed as ET. We should take NIID into account for differential diagnosis of ET. Systemic areflexia could be an important clinical clue suggesting that cranial magnetic resonance imaging examination, or even further genetic testing and skin biopsy examination, should be used to confirm the diagnosis of NIID.


Assuntos
Tremor Essencial , Corpos de Inclusão Intranuclear , Tremor Essencial/diagnóstico , Tremor Essencial/genética , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas , Tremor/diagnóstico , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética
5.
Brain ; 143(2): 491-502, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851307

RESUMO

Primary familial brain calcification is a monogenic disease characterized by bilateral calcifications in the basal ganglia and other brain regions, and commonly presents motor, psychiatric, and cognitive symptoms. Currently, four autosomal dominant (SLC20A2, PDGFRB, PDGFB, XPR1) and one autosomal recessive (MYORG) causative genes have been identified. Compared with patients with autosomal dominant primary familial brain calcification, patients with the recessive form of the disease present with more severe clinical and imaging phenotypes, and deserve more clinical and research attention. Biallelic mutations in MYORG cannot explain all autosomal recessive primary familial brain calcification cases, indicating the existence of novel autosomal recessive genes. Using homozygosity mapping and whole genome sequencing, we detected a homozygous frameshift mutation (c.140delT, p.L48*) in the JAM2 gene in a consanguineous family with two affected siblings diagnosed with primary familial brain calcification. Further genetic screening in a cohort of 398 probands detected a homozygous start codon mutation (c.1A>G, p.M1?) and compound heterozygous mutations [c.504G>C, p.W168C and c.(67+1_68-1)_(394+1_395-1), p.Y23_V131delinsL], respectively, in two unrelated families. The clinical phenotypes of the four patients included parkinsonism (3/4), dysarthria (3/4), seizures (1/4), and probable asymptomatic (1/4), with diverse onset ages. All patients presented with severe calcifications in the cortex in addition to extensive calcifications in multiple brain areas (lenticular nuclei, caudate nuclei, thalamus, cerebellar hemispheres, ± brainstem; total calcification scores: 43-77). JAM2 encodes junctional adhesion molecule 2, which is highly expressed in neurovascular unit-related cell types (endothelial cells and astrocytes) and is predominantly localized on the plasma membrane. It may be important in cell-cell adhesion and maintaining homeostasis in the CNS. In Chinese hamster ovary cells, truncated His-tagged JAM2 proteins were detected by western blot following transfection of p.Y23_V131delinsL mutant plasmid, while no protein was detected following transfection of p.L48* or p.1M? mutant plasmids. In immunofluorescence experiments, the p.W168C mutant JAM2 protein failed to translocate to the plasma membrane. We speculated that mutant JAM2 protein resulted in impaired cell-cell adhesion functions and reduced integrity of the neurovascular unit. This is similar to the mechanisms of other causative genes for primary familial brain calcification or brain calcification syndromes (e.g. PDGFRB, PDGFB, MYORG, JAM3, and OCLN), all of which are highly expressed and functionally important in the neurovascular unit. Our study identifies a novel causative gene for primary familial brain calcification, whose vital function and high expression in the neurovascular unit further supports impairment of the neurovascular unit as the root of primary familial brain calcification pathogenesis.


Assuntos
Encefalopatias/genética , Encéfalo/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Adulto , Encéfalo/patologia , Encefalopatias/metabolismo , Calcinose/genética , Feminino , Genes Recessivos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Linhagem , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor do Retrovírus Politrópico e Xenotrópico
6.
Mov Disord ; 35(6): 1012-1020, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32129927

RESUMO

BACKGROUND: Intronic pentanucleotide insertion in the sterile alpha motif domain-containing 12 gene was recently identified as the genetic cause of familial cortical myoclonic tremor with epilepsy type 1. OBJECTIVES: We thereafter conducted a multimodal MRI research to further understand familial cortical myoclonic tremor with epilepsy type 1. METHODS: We enrolled 31 patients carrying heterozygous pathogenic intronic pentanucleotide insertion in the sterile alpha motif domain-containing 12 gene and 31 age- and sex-matched healthy controls. We compared multimodal MRI metrics, including voxel-based morphometry, fractional anisotropy of diffuse tensor imaging, frequency-dependent percent amplitude fluctuation, and seed-based functional connectivity of resting-state functional MRI. RESULTS: Significant decreased gray matter volume was found in the cerebellum. Percent amplitude fluctuation analysis showed significant interaction effect of "Frequency by Group" in three regions, including the vermis VIII, left cerebellar lobule VIII, and left precentral gyrus. Specifically, the lowest-frequency band exhibited significant increased percent amplitude fluctuation in patients in the two cerebellar subregions, whereas the highest-frequency band exhibited decreased percent amplitude fluctuation in the precentral gyrus in patients. Discriminative analysis by support vector machine showed a mean accuracy of 82% (P = 1.0-5 ). An increased functional connectivity between vermis VIII and the left precentral gyrus was found in patients with familial cortical myoclonic tremor with epilepsy type 1. A positive correlation between the percent amplitude fluctuation in the left cerebellar lobule VIII and duration of cortical tremor was also found. CONCLUSION: The cerebellum showed both structural and functional damages. The distinct change of spontaneous brain activity, that is, increased ultra-low-frequency amplitude in the cerebellum and the decreased higher-frequency amplitude in the motor cortex, might be a pathophysiological feature of familial cortical myoclonic tremor with epilepsy type 1. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Cerebelo , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/genética , Humanos , Imageamento por Ressonância Magnética , Tremor/diagnóstico por imagem , Tremor/genética
7.
Mov Disord ; 35(4): 679-686, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31951047

RESUMO

BACKGROUND: Biallelic mutations in the MYORG gene were first identified as the cause of recessively inherited primary familial brain calcification. Interestingly, some heterozygous carriers also exhibited brain calcifications. OBJECTIVES: To further investigate the role of single heterozygous MYORG mutations in the development of brain calcifications. METHODS: A nation-wide cohort of Chinese primary familial brain calcification probands was enrolled from March 2016 through September 2019. Mutational analysis of MYORG was performed in 435 primary familial brain calcification probands who were negative for mutations in the other four known primary familial brain calcification-causative genes (SLC20A2, PDGFRB, PDGFB, and XPR1). RESULTS: Biallelic MYORG mutations were identified in 14 primary familial brain calcification patients from 10 unrelated families. Interestingly, 12 heterozygous carriers from seven of these families also exhibited mild-to-moderate brain calcifications. Moreover, single heterozygous mutations were detected in an additional 9 probands and in 7 of their family members affected with brain calcifications. In our cohort, clinical and imaging penetrance of individuals with biallelic mutations were 100%, whereas among individuals with heterozygous mutations, penetrance of imaging phenotype was reduced to 73.7% (28 of 38) and clinical penetrance was much lower. Most (34 of 38) remained asymptomatic whereas 4 carriers had symptoms of uncertain clinical significance (nonspecific depression, epilepsy and late-onset parkinsonism). Compared with individuals with biallelic MYORG mutations, individuals with heterozygous mutations had brain calcifications with much lower calcification scores (P < 2e-16). CONCLUSIONS: Presence of brain calcifications in individuals with heterozygous MYORG mutations suggested a semidominant inheritance pattern with incomplete penetrance. This finding further expanded the genotype-phenotype correlations of MYORG-related primary familial brain calcification. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Encefalopatias , Glicosídeo Hidrolases/genética , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/genética , Heterozigoto , Humanos , Mutação/genética , Linhagem , Receptor do Retrovírus Politrópico e Xenotrópico
8.
Mov Disord ; 34(6): 912-916, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30964957

RESUMO

BACKGROUND: Recently, the LRP10 gene has been identified as a novel genetic cause in individuals affected by Parkinson's disease (PD), Parkinson's disease dementia, or dementia with Lewy bodies. OBJECTIVE: We investigated the involvement of LRP10 mutations in Chinese patients with familial PD and reviewed previous studies of LRP10 mutations in patients with PD. METHODS: A mutation analysis of the LRP10 gene was performed in a cohort of 205 unrelated Chinese patients with familial PD. Burden analysis was conducted using data from the Genome Aggregation Database and 5 genetic studies of LRP10 in patients with PD (including our cohort). RESULTS: A total of 3 novel potentially pathogenic variants, c.32T>A (p.L11H), c.1184G>A (p.R395H), and c.1333G>A (p.A445T), were detected in 3 probands of our cohort. However, burden analysis argued against an overrepresentation of variant alleles in patients with PD. CONCLUSIONS: Genetic screening of the LRP10 gene in our cohort may provide independent, albeit limited, evidence for the pathogenicity of LRP10 in familial PD. Burden analysis using data from current studies failed to support the association between LRP10 and PD in general. Thus, more robust replication studies are warranted to determine the involvement of LRP10 in the pathogenesis of PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Proteínas Relacionadas a Receptor de LDL/genética , Mutação , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Idoso , China , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
9.
Mov Disord ; 34(10): 1571-1576, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483537

RESUMO

BACKGROUND: Intronic (TTTCA)n insertions in the SAMD12, TNRC6A, and RAPGEF2 genes have been identified as causes of familial cortical myoclonic tremor with epilepsy. OBJECTIVE: To identify the cause of familial cortical myoclonic tremor with epilepsy pedigrees without (TTTCA)n insertions in SAMD12, TNRC6A, and RAPGEF2. METHODS: Repeat-primed polymerase chain reaction, long-range polymerase chain reaction, and Sanger sequencing were performed to identify the existence of a novel (TTTGA)n insertion. Targeted long-read sequencing was performed to confirm the accurate structure of the (TTTGA)n insertion. RESULTS: We identified a novel expanded intronic (TTTGA)n insertion at the same site as the previously reported (TTTCA)n insertion in SAMD12. This insertion cosegregated with familial cortical myoclonic tremor with epilepsy in 1 Chinese pedigree with no (TTTCA)n insertion. In the targeted long-read sequencing of 2 patients and 1 asymptomatic carrier in this pedigree, with 1 previously reported (TTTCA)n -insertion-carrying patient as a positive control, a respective total of 302, 159, 207, and 50 on-target subreads (predicated accuracy: ≥90%) spanning the target repeat expansion region were generated. These sequencing data revealed the accurate repeat expansion structures as (TTTTA)114-123 (TTTGA)108-116 in the pedigree and (TTTTA)38 (TTTCA)479 in (TTTCA)n -insertion-carrying patient. CONCLUSION: The targeted long-read sequencing helped us to elucidate the accurate structures of the (TTTGA)n and (TTTCA)n insertions. Our finding offers a novel possible cause for familial cortical myoclonic tremor with epilepsy and might shed light on the identification of genetic causes of this disease in pedigrees with no detected (TTTCA)n insertion in the reported causative genes. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Epilepsias Mioclônicas/genética , Proteínas do Tecido Nervoso/genética , Tremor/genética , Adulto , Povo Asiático , Epilepsias Mioclônicas/complicações , Humanos , Íntrons/fisiologia , Masculino , Linhagem , Tremor/complicações
10.
Eur J Hum Genet ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467733

RESUMO

Familial cortical myoclonic tremor with epilepsy type 1 (FCMTE1) is caused by (TTTTA)exp(TTTCA)exp repeat expansions in SAMD12, while pure (TTTTA)exp is polymorphic. Our investigation focused on the origin and evolution of pure (TTTTA)exp and (TTTTA)exp(TTTCA)exp at this locus. We observed a founder effect between them. The phylogenetic analysis suggested that the (TTTTA)exp(TTTCA)exp might be generated from pure (TTTTA)exp through infrequent transformation events. Long-read sequencing revealed somatic generation of (TTTTA)exp(TTTCA)exp from pure (TTTTA)exp, likely via long segment (TTTCA) repeats insertion. Our findings indicate close relationships between the non-pathogenic (TTTTA)exp and the pathogenic (TTTTA)exp(TTTCA)exp, with dynamic interconversions. This sheds light on the genesis of pathogenic repeat expansions from ancestral premutation alleles. Our results may guide future studies in detecting novel repeat expansion disorders and elucidating repeat expansion mutational processes, thereby enhancing our understanding of human genomic variation.

11.
J Clin Neurosci ; 96: 147-153, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34789416

RESUMO

BACKGROUND: Autonomic dysfunction in progressive supranuclear palsy (PSP) is not uncommon but is easily neglected. OBJECTIVE: We evaluated blood pressure (BP) profiles in PSP patients and aimed to determine the associations between BP variability and cognition and quality of life. METHODS: Consecutive patients diagnosed with PSP were enrolled in this cross-sectional study. All patients underwent 24-hour ambulatory blood pressure monitoring, office blood pressure measurements, and comprehensive clinical assessments. RESULTS: We enrolled 31 PSP patients. Ten (32.3%) patients presented with reverse dipping, 10 (32.3%) presented with reduced dipping, and 11 (35.5%) presented with normal dipping. Additionally, 19 (61.3%) patients had supine hypertension, and no patients had orthostatic hypotension. In the entire PSP cohort, the Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) score, Scales for Outcomes in Parkinson's Disease-Autonomic (SCOPA-AUT) score, and daytime systolic BP (SBP) standard deviation explained 61.5% (adjusted R2) of the variance in Parkinson's Disease Questionnaire-39 (PDQ-39) scores. In the PSP with Richardson's syndrome group, the daytime SBP coefficient of variation and Mini-Mental State Examination score accounted for 33.9% of the variance in Frontal Assessment Battery scores. The MDS-UPDRS III score, 24-hour SBP coefficient of variation, and SCOPA-AUT score explained 77.6% of the variance in PDQ-39 scores. CONCLUSIONS: Greater BP variability was associated with executive dysfunction and poorer quality of life in patients with PSP. A high prevalence of abnormal dipping patterns indicated circadian disruption in patients with PSP.


Assuntos
Doença de Parkinson , Paralisia Supranuclear Progressiva , Monitorização Ambulatorial da Pressão Arterial , Estudos Transversais , Humanos , Doença de Parkinson/complicações , Qualidade de Vida , Paralisia Supranuclear Progressiva/complicações
12.
Netw Neurosci ; 5(1): 83-95, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688607

RESUMO

There have been successful applications of deep learning to functional magnetic resonance imaging (fMRI), where fMRI data were mostly considered to be structured grids, and spatial features from Euclidean neighbors were usually extracted by the convolutional neural networks (CNNs) in the computer vision field. Recently, CNN has been extended to graph data and demonstrated superior performance. Here, we define graphs based on functional connectivity and present a connectivity-based graph convolutional network (cGCN) architecture for fMRI analysis. Such an approach allows us to extract spatial features from connectomic neighborhoods rather than from Euclidean ones, consistent with the functional organization of the brain. To evaluate the performance of cGCN, we applied it to two scenarios with resting-state fMRI data. One is individual identification of healthy participants and the other is classification of autistic patients from normal controls. Our results indicate that cGCN can effectively capture functional connectivity features in fMRI analysis for relevant applications.

13.
Front Neurosci ; 13: 434, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118882

RESUMO

In most task and resting state fMRI studies, a group consensus is often sought, where individual variability is considered a nuisance. None the less, biological variability is an important factor that cannot be ignored and is gaining more attention in the field. One recent development is the individual identification based on static functional connectome. While the original work was based on the static connectome, subsequent efforts using recurrent neural networks (RNN) demonstrated that the inclusion of temporal features greatly improved identification accuracy. Given that convolutional RNN (ConvRNN) seamlessly integrates spatial and temporal features, the present work applied ConvRNN for individual identification with resting state fMRI data. Our result demonstrates ConvRNN achieving a higher identification accuracy than conventional RNN, likely due to better extraction of local features between neighboring ROIs. Furthermore, given that each convolutional output assembles in-place features, they provide a natural way for us to visualize the informative spatial pattern and temporal information, opening up a promising new avenue for analyzing fMRI data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA