Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nanotechnology ; 32(50)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547730

RESUMO

Although the wearable strain sensors have received extensive research interest in recent years, it remains a huge challenge conforming the requirements in both of ultrahigh stretchability and high strain coefficient (gauge factor). Herein, a stretchable and flexible spandex fiber strain sensor coupled with carbon nanotubes (CNTs)/Ag nanoparticles (Ag NPs) that assembled through an efficient and large-scale layer-by layer self-assembly is presented. To ensure CNTs and Ag NPs can attach well to the spandex fiber without falling off, achieving high sensitivity under large tensile, sodium dodecyl benzene sulfonate, polyvinyl alcohol, and polystyrene sulfonic acid are introduced to improve the adhesion via the molecular entanglement and other interactions between them. Consequently, the strain sensor exhibits remarkable performance, such as an ultrahigh gauge factor of 58.5 in the low-strain range from 0% to 20%, a wide strain range (0%-200%), a fast response time of 42 ms and good working stability (>5000 stretching-releasing cycles). Subsequently, detailed mechanism of the sensor and its use in full range of human motion monitoring are further studied. It is worth noting that with the distinctive mechanism and structure, the special spandex fiber sensor is able to monitor minimum strain as low as 0.053%, showing tremendous prospect for the field of smart fabrics and wearable health care devices.

2.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641374

RESUMO

This paper reports the influence of submicron hydrophilic fibers on the hydration and microstructure of Portland cement paste. Submicron fibrillated cellulose (SMC) fibers was prepared by the acid hydrolysis of cotton fibers in H2SO4 solution (55% v/v) for 1.5 h at a temperature of 50 °C. The SMC fibers were added into cement with a dosage of 0.03 wt.%, and the effect of SMC on the hydration and microstructure of cement paste was investigated by calorimeter analysis, XRD, FT-IR, DSC-TG, and SEM. Microcrystalline cellulose (MCC) fibers were used as the contrast admixture with the same dosage in this study. The results show that the addition of SMC fibers can accelerate the cement hydration rate during the first 20 h of the hydration process and improve the hydration process of cement paste in later stages. These results are because the scale of SMC fibers more closely matches the size of the C-S-H gel compared to MCC fibers, given that the primary role of the SMC is to provide potential heterogeneous nucleation sites for the hydration products, which is conducive to an accelerated and continuous hydration reaction. Furthermore, the induction and bridging effects of the SMC fibers make the cement paste microstructure more homogeneous and compact.

3.
ACS Appl Mater Interfaces ; 16(6): 7883-7893, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299449

RESUMO

Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.

4.
Adv Sci (Weinh) ; : e2403352, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874020

RESUMO

Lead-free halide perovskites possess excellent photoelectric properties, making them widely used in the photoelectric fields. Herein, lead-free double perovskite crystals (PCs) doped with manganese (Cs2NaInCl6:Mn2+) are successfully prepared by the more energy-efficient crystallization method. The crystals emit bright orange-red light under the ultraviolet (UV) lamp, showing unique optical properties. They have the highest photoluminescence quantum yield of 42.91%. The white light-emitting diodes (LEDs) are fabricated using these perovskite crystals, which show a color rendering index of 92 and external quantum efficiency (EQE) as high as 16.3%. Furtherly, perovskite-modified fiber paper made of aramid chopped fibers (ACFs) and polyphenylene sulfide (PPS) exhibited fluorescent properties under different conditions. This paper combines fiber composite technology with PPS fiber filter bags, which are widely used in environmental protection, for the first time and demonstrates functional fiber filter bags with fluorescent characteristics. This filter bag provides an idea for the automatic detection of industrial filtration. Meanwhile, after being exposed to industrial waste gas for 60 h, the filter bag can maintain superior fluorescence performance. In this study, lead-free double perovskites are synthesized using an efficient method for preparing high-performance LEDs and high-stability fluorescent fibers. Concurrently, the application of perovskites in environmental protection is expanded.

5.
Environ Technol ; 44(27): 4188-4198, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35608968

RESUMO

Solar photothermal water evaporation technology has attracted attention owing to its promising applications in wastewater treatment and desalination for producing clean water. However, high-performance solar evaporators are still limited by the complex manufacturing process, less flexibility, intolerance to salt, high cost, and low water evaporation efficiency.In this study, composite fibre paper composed of waste tissue paper, aramid nanofibers, and polyaniline was prepared to produce clean water. The evaporator was designed to pump water through a cotton wick to the composite paper, which reduced heat loss and avoided the deposition of salt on the surface. The use of waste tissue paper solves the problem of waste disposal, increases the commercial value of waste tissue, and reduces production costs. The composite fibre paper exhibited broad-band light absorption of an average of 96%. The average evaporation rate of the solar evaporator was 1.43 kg m-2 h-1, and the photothermal conversion efficiency was 98.33% under 1 sun illumination. This solar evaporator is easily fabricated and is cost-effective, demonstrating the enormous potential for real-world wastewater treatment and desalination to produce clean water.


Assuntos
Nanofibras , Eliminação de Resíduos , Água
6.
Nanoscale ; 15(10): 4893-4898, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36779655

RESUMO

All-inorganic metal halide perovskites are widely studied because of their excellent photoelectric properties. However, due to the toxicity of CsPbX3 (X = Cl, Br, I) perovskites, it is difficult to apply them on a large scale. The lead-free nature and air stability make Cs2SnX6 (X = Cl, Br, I) perovskites possible candidates to replace CsPbX3 perovskites. Herein, we report the perovskite crystals (PCs) based on Te(IV)-doped Cs2SnCl6: Cs2Sn1-xTexCl6. Cs2Sn1-xTexCl6 PCs showed yellow emission under a 365 nm ultraviolet lamp. The photoluminescence quantum yield (PLQY) of Cs2Sn0.94Te0.06Cl6 PCs was 57.09%, which was proposed to be from the triplet Te(IV) ion 3P1 → 1S0 self-trapping excitons (STE) recombination. The perovskite crystals can be used to fabricate light-emitting diodes (LEDs). The fiber paper prepared from aramid chopped fibers (ACFs) and polyphenylene sulfide (PPS) fibers showed a bright yellow light under 365 nm ultraviolet light after being post-processed with Cs2Sn1-xTexCl6 PCs solution. The ACFs/PPS compound fiber paper modified with Cs2Sn1-xTexCl6 PCs maintained exceptional optical properties and could be stored in air for more than 4500 h. The fluorescence performance of the modified ACFs/PPS compound fiber paper could be applied to fluorescence anti-counterfeiting. The modification strategy and the applications in this work will provide a good choice for studying the optical performance of perovskites and broaden the application of ACFs/PPS compound fiber paper.

7.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376364

RESUMO

This review provides an overview of microcapsule self-healing technology and its application in the field of cement-based materials, as well as future prospects. The presence of cracks and damage in cement-based structures during service has a significant impact on their lifespan and safety performance. Microcapsule self-healing technology shows promise in achieving self-healing by encapsulating healing agents within microcapsules, which are released upon damage to the cement-based material. The review starts by explaining the fundamental principles of microcapsule self-healing technology and explores various methods for preparing and characterizing microcapsules. It also investigates the influence of incorporating microcapsules on the initial properties of cement-based materials. Additionally, the self-healing mechanisms and effectiveness of microcapsules are summarized. Finally, the review discusses the future development directions for microcapsule self-healing technology, outlining potential areas for further research and advancement.

8.
Chemphyschem ; 13(14): 3320-9, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22763917

RESUMO

A series of metal-free organic donor-π bridge-acceptor dyes are studied computationally using density functional theory (DFT) and time-dependent DFT (TDDFT) approaches to explore their potential performances in dye-sensitized solar cells (DSSCs). Taking triphenylamine (TPA) and cyanoacrylic acid moieties as donor and acceptor units, respectively, the effects of different substituents of the π linkers in the TPA-based dyes on the energy conversion efficiency of the DSSCs are theoretically evaluated through optimized geometries, charge distributions, electronic structures, simulated absorption spectra, and free energies of injection. The results show that the molecular orbital energy levels and electron-injection driving forces of the TPA dyes can be tuned by the introduction of substituents with different electron-withdrawing or -donating abilities. The electron-withdrawing substituent always lowers the energies of both frontier orbitals, while the electron-donating one heightens them simultaneously. The efficiency trend of these TPA derivatives as sensitizers in DSSCs is also predicted by analyzing the light-harvesting efficiencies and the free energies of injection. The following substituents are shown to increase the efficiency of the dye: OMe, OEt, OHe, and OH.


Assuntos
Aminas/química , Fontes de Energia Elétrica , Corantes Fluorescentes/química , Teoria Quântica , Cianoacrilatos/química , Estrutura Molecular , Fatores de Tempo
9.
Adv Mater ; 34(52): e2110608, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35291047

RESUMO

Flexible pressure sensors are one of the most important components in the fields of electronic skin (e-skin), robotics, and health monitoring. However, the application of pressure sensors in practice is still difficult and expensive due to the limited sensing properties and complex manufacturing process. The emergence of MXene, a red-hot member of the 2D nanomaterials, has brought a brand-new breakthrough for pressure sensing. Ti3 C2 Tx is the most popular studied MXene in the field of pressure sensing and shows good mechanical, electrical properties, excellent hydrophilicity, and extensive modifiability. It will ameliorate the properties of the sensitive layer and electrode layer of the pressure sensor, and further apply pressure sensing to many fields, such as e-skin flexibility. Herein, the preparation technologies, antioxidant methods, and properties of MXene are summarized. The design of MXene-based microstructures is introduced, including hydrogels, aerogels, foam, fabrics, and composite nanofibers. The mechanisms of MXene pressure sensors are further broached, including piezoresistive, capacitive, piezoelectric, triboelectric, and potentiometric transduction mechanism. Moreover, the integration of multiple devices is reviewed. Finally, the chance and challenge of pressure sensors improved by MXene smart materials in future e-skin and the Internet of Things are prospected.

10.
ACS Nano ; 16(5): 8461-8471, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35504043

RESUMO

Flexible pressure sensors have aroused extensive attention in health monitoring, human-computer interaction, soft robotics, and more, as a staple member of wearable electronics. However, a majority of traditional research focuses solely on foundational mechanical sensing tests and ordinary human-motion monitoring, ignoring its other applications in daily life. In this work, a paper-based pressure sensor is prepared by using MXene/bacterial cellulose film with three-dimensional isolation layer structure, and its sensing capability as a wearable sound detector has also been studied. The as-prepared device exhibits great comprehensive mechanical sensing performance as well as accurate detection of human physiological signals. As a sound detector, not only can it recognize different voice signals and sound attributes by monitoring movement of throat muscles, but also it will distinguish a variety of natural sounds through air pressure waves caused by sound transmission (also called sound waves), like the eardrum. Besides, it plays an important role in sound visualization technology because of the ability for capturing and presenting music signals. Moreover, millimeter-scale thickness, lightweight, and degradable raw materials make the sensor convenient and easy to carry, meeting requirements of environmental protection as well.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Celulose , Eletrônica , Som , Movimento (Física)
11.
Polymers (Basel) ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080566

RESUMO

The heterogeneous Fenton system has drawn great attention in recent years due to its effective degradation of polluted water capability without limitation of the pH range and avoiding excess ferric hydroxide sludge. Therefore, simple chemical precipitation and vacuum filtration method for manufacturing the heterogeneous Fenton aramid nanofibers (ANFs)/ferrous oxalate (FeC2O4) composite membrane catalysts with excellent degradation of methylene blue (MB) is reported in the study. The morphology and structure of materials synthesized were characterized by scanning electron microscope (SEM), X-ray energy spectrum analysis (EDS), infrared spectrometer (FTIR), and X-ray diffraction (XRD) equipment. The 10 ppm MB degradation efficiency of composite catalyst and ferrous oxalate (FeC2O4) within 15 min were 94.5% and 91.6%, respectively. The content of methylene blue was measured by a UV-Vis spectrophotometer. Moreover, the dye degradation efficiency still could achieve 92% after five cycles, indicating the composite catalyst with excellent chemical stability and reusability. Simultaneously, the composite catalyst membrane can degrade not only MB but also rhodamine B (RB), orange II (O II), and methyl orange (MO). This study represents a new avenue for the fabrication of heterogeneous Fenton catalysts and will contribute to dye wastewater purification, especially in the degradation of methylene blue.

12.
Heliyon ; 8(12): e12566, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619440

RESUMO

Ba2La2.85-x Tb0.15Sm x (SiO4)3F (BLSOF:0.15Tb3+,xSm3+) is a polychromatic phosphor with an apatite structure that was manufactured through a solid-state process. X-ray diffraction (XRD) and a scanning electron microscope (SEM) were utilized to examine the phosphor's phase and morphology. Using the Rietveld technique, the as-prepared phosphor structure was validated. By progressively raising the doping contents of the samarium, the phosphors emitted multicoloured luminescence from short to long wavelengths as indicated by analysis of the optical performance. Overall, the data provide strong evidence that the transfer of energy in BLSOF:0.15Tb3+,xSm3+ is responsible for the phosphor's colour-tunable property.

13.
RSC Adv ; 12(51): 33200-33206, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425191

RESUMO

The polychromatic phosphor with an apatite structure Ca2La3(SiO4)3F:0.15Tb3+,xSm3+ (CLSOF:0.15Tb3+,xSm3+) was synthesized via a solid-state route. The phase and morphology of the phosphor has been investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The structures of the as-prepared phosphor were verified by means of the Rietveld method. The optical performance was investigated thoroughly and the phosphors could emit multicolor light from short wavelengths to long wavelengths by gradually increasing the doping contents of samarium. All the results support that the energy transfer in CLSOF:0.15Tb3+,xSm3+ contributes to the color tunable property of the phosphor.

14.
J Comput Chem ; 32(15): 3241-52, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21837634

RESUMO

A quantitative structure-property relationship (QSPR) study was performed for the prediction of the Setschenow constants (K(salt)) by sodium chloride of organic compounds. The entire set of 101 compounds was randomly divided into a training set of 71 compounds and a test set of 30 compounds. Multiple linear regression, artificial neural network (ANN), and support vector machine (SVM) were utilized to build the linear and nonlinear QSPR models, respectively. The obtained models with four descriptors involved show good predictive ability. The linear model fits the training set with R(2) = 0.8680, while ANN and SVM higher values of R(2) = 0.8898 and 0.9302, respectively. The validation results through the test set indicate that the proposed models are robust and satisfactory. The QSPR study suggests that the molecular lipophilicity is closely related to the Setschenow constants.


Assuntos
Compostos Orgânicos/química , Relação Quantitativa Estrutura-Atividade , Máquina de Vetores de Suporte , Métodos , Redes Neurais de Computação
15.
J Nanosci Nanotechnol ; 11(4): 3298-305, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776700

RESUMO

Chemical reactivity and molecular structure of energetic materials may be significantly changed when they are confined inside carbon nanotubes (CNTs). The ONIOM calculations were carried out to investigate the molecular structures and the N-N bond decomposition of nitramide (NA) and methylnitramine (MNA) confined inside armchair single-walled CNTs with different diameter. Results showed that confinement in CNT(6, 6) and CNT(7, 7) had no evident influence on the structure of NA and MNA. However, the structures of NA and MNA within CNT(5, 5) were altered significantly with respect to the structures of the isolated NA and MNA. Compared with NA, MNA showed stronger interaction with these CNTs studied. By analyzing the potential energy curve along the N-N bond, we found that the energy barriers of the N-N bond decomposition for the NA and MNA are decreased by 11.6 and 10.8 kcal/mol, respectively, due to the confinement of CNT(5, 5). Confinement in CNT(6, 6) resulted in a slight decrease in the activation energy. Confinement in CNT(7, 7) did not affect the thermal decomposition of NA and MNA. We conclude that the N-N bond dissociation of NA and MNA can be promoted by confinement in a CNT with small diameter.


Assuntos
Amidas/química , Aminas/química , Modelos Químicos , Modelos Moleculares , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
RSC Adv ; 11(46): 28716-28722, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35478567

RESUMO

As promising low-dimensional semiconductor materials, cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite-like nanowires (NWs) can be widely applied to the field of semiconductor devices and integrated optoelectronics. Therefore, developing a facile and efficient synthesis method of cesium lead halide perovskite-like NWs can bring both fundamental and practical impacts to the field of optoelectronics. Here, we developed a synthesis strategy of all-inorganic cesium lead halide CsPbI3 perovskite-like NWs under catalyst-free, solution-phase, and low-temperature conditions. The synthesis strategy was designed such that no inert gas is required and thus enables the synthesis to be carried out in air, which significantly reduces temperature, steps, time, and cost required for the reaction. The as-synthesized NWs were 7 µm in length and 80-100 nm in diameter with ideal morphology. Most of the CsPbI3 NWs were crystallized in orthorhombic phases that were arranged orderly with a uniform growth direction. In addition, the CsPbI3 NWs showed a photoluminescence peak near 610 nm and the fluorescence lifetime was 7.34 ns. The photoluminescence mechanism of CsPbI3 NWs involves the self-trapping behaviour in the radiative recombination process. The composition of CsPbI3 NWs is highly related to the synthesis temperature. The facile synthesis strategy has opened up a novel path for the synthesis of perovskite-like NWs, laying the foundation for the application of nano-optoelectronic devices, fluorescent anti-counterfeiting, and fluorescent composite materials.

17.
Carbohydr Polym ; 248: 116753, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919556

RESUMO

As an indispensable component, separator is close related to electrochemical performance and safety of lithium-ion batteries (LIBs). However, the current widely applied polyolefin microporous separator impedes the development of high power LIBs due to poorer electrolyte wettability and inferior thermal stability. Herein, heat-resistant polyphenylene sulfide (PPS) fibers and cellulose fibers (CFs) are adopted to fabricate a novel composite separator (CFs/PPS) via a facile papermaking process. The as-prepared CFs/PPS separator exhibits higher porosity, improved electrolyte uptake and superior wettability. These boost its ionic conductivity and decrease interfacial resistance between CFs/PPS separator and electrode, which further endow battery with good rate capability. Moreover, in comparison to commercial polypropylene separator, CFs/PPS separator gives superior thermal stability, satisfactory mechanical strength, broader electrochemical window and more stable cycle performance. Accordingly, CFs/PPS composite separator is very promising for application in high power LIBs.

18.
Int J Biol Macromol ; 161: 122-131, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512100

RESUMO

In this paper, the electronspun Polylactic acid (PLA)/TiO2 nanofluids (nfs) fibrous membrane with good toughness, hydrophilicity and antibacterial activities are fabricated by taking full advantages of solvent-free TiO2 nfs with amphiphilicity and ionic conductivity. The resulting PLA/TiO2 nfs fibrous membrane exhibits excellent mechanical performance with a tensile strength and elongation at break of 3.68 MPa and 97.32 MPa at 5 wt% loading, respectively, which is 4 and 8 times higher than that of pure PLA, respectively. Additionally, TiO2 nfs can migrate onto the surface of PLA fibers during electrospun process, which significantly enhanced hydrophilicity, antistatic property, moisture sorption capacity and wicking properties of PLA fabrics. Meanwhile, the membrane also showed ultrafast water filtration of 3500 L m-2 h-1 driven by gravity force, which is 10-12 times higher than that of commercial ultrafiltration membrane. After ion-exchange reaction with salt solution, excellent antibacterial activity (against E. coli and S. aureus was 95% and 99.9%, respectively) and separation efficiency (above 90% on E. coli) of the obtained fabrics are also achieved. Overall, organic nfs are an idea candidate for fabricating hydrophilic PLA based biodegradable fabric that can be applied in contaminated water treatment, antibacterial textiles and biodegradable absorption materials.


Assuntos
Membranas Artificiais , Plásticos/química , Poliésteres/química , Antibacterianos/química , Antibacterianos/farmacologia , Fenômenos Químicos , Técnicas de Química Sintética , Condutividade Elétrica , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Permeabilidade , Plásticos/síntese química , Solventes , Análise Espectral , Resistência à Tração , Titânio/química
19.
ACS Appl Mater Interfaces ; 12(9): 11204-11213, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030971

RESUMO

In view of the sustainable and environmentally friendly characteristics of solar energy, solar water evaporation has been identified as a promising approach to mitigate the global water crises. However, it is still a great challenge to develop a portable, flexible, scalable, and high-performance solar water evaporation material. Herein, a bilayer-structured solar water evaporation material consisting of a top multiwalled carbon nanotube (MWCNT) layer and a bottom polyphenylene sulfide/fibrillated cellulose (PPS/FC) paper was fabricated via a simple vacuum filtration technology for efficient solar water evaporation. The MWCNT layer performs as a light absorber with a high solar absorptance (∼93%) in the wavelength range from 400 to 1200 nm and good light-to-heat conversion capability, while the bottom layer (porous network-structured PPS/FC paper) exhibits excellent water transporting ability, high temperature stability, and good thermal insulating capability (0.0467 W m-1 K-1). Benefiting from the above advantages, an attractive water evaporation rate of 1.34 kg m-2 h-1 was achieved with near ∼95% efficiency under 1 sun irradiation (1 kW m-2). Moreover, the MWCNTs@PPS/FC paper maintains high solar evaporation efficiency after several cycles, indicating long-term durability and good reusability. Moreover, the collected clean water using the MWCNTs@PPS/FC paper from seawater of different salinities, simulated wastewater samples with different pH values or containing heavy metal ions, as well as industrial dyes, satisfy the drinkable water standard (defined by WHO), demonstrating excellent seawater desalination and wastewater purification capability. The advanced performances of the MWCNTs@PPS/FC paper could inspire novel paradigms of solar-driven water evaporation technologies in drinkable water collection.

20.
J Fluoresc ; 19(2): 203-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18665436

RESUMO

The quantitative structure-property relationship approach was performed to study the relative fluorescence intensity ratio (R) of Eu(DBM)(3)Phen (DBM-dibenzoylmethane, Phen-1,10-phenanthroline) in 34 different solvents. The multilinear regression analysis and artificial neural networks were employed to develop linear and nonlinear models, respectively. The proposed linear model contains six descriptors, with the squared correlation coefficient r(2) = 0.955 and the standard error of estimation s = 1.02. Better predictive results were obtained from the nonlinear model, with r(2) = 0.987 and s = 0.51. The descriptors involved in the models were discussed in detail too.


Assuntos
Európio/química , Fluorescência , Compostos Organometálicos/química , Relação Quantitativa Estrutura-Atividade , Redes Neurais de Computação , Fenantrolinas , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA