Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(20): 207002, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24289703

RESUMO

We use inelastic neutron scattering to show that superconductivity in electron-underdoped NaFe0.985Co0.015As induces a dispersive sharp resonance near E(r1)=3.25 meV and a broad dispersionless mode at E(r2)=6 meV. However, similar measurements on overdoped superconducting NaFe0.935Co0.045As find only a single sharp resonance at E(r)=7 meV. We connect these results with the observations of angle-resolved photoemission spectroscopy that the superconducting gaps in the electron Fermi pockets are anisotropic in the underdoped material but become isotropic in the overdoped case. Our analysis indicates that both the double neutron spin resonances and gap anisotropy originate from the orbital dependence of the superconducting pairing in the iron pnictides. Our discovery also shows the importance of the inelastic neutron scattering in detecting the multiorbital superconducting gap structures of iron pnictides.

2.
Phys Rev Lett ; 108(24): 247002, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23004310

RESUMO

Superconductivity in the iron pnictides develops near antiferromagnetism, and the antiferromagnetic (AF) phase appears to overlap with the superconducting phase in some materials such as BaFe(2-x)T(x)As2 (where T=Co or Ni). Here we use neutron scattering to demonstrate that genuine long-range AF order and superconductivity do not coexist in BaFe(2-x)Ni(x)As2 near optimal superconductivity. In addition, we find a first-order-like AF-to-superconductivity phase transition with no evidence for a magnetic quantum critical point. Instead, the data reveal that incommensurate short-range AF order coexists and competes with superconductivity, where the AF spin correlation length is comparable to the superconducting coherence length.

3.
Nat Commun ; 4: 2874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24301219

RESUMO

High-temperature superconductivity in iron pnictides occurs when electrons and holes are doped into their antiferromagnetic parent compounds. Since spin excitations may be responsible for electron pairing and superconductivity, it is important to determine their electron/hole-doping evolution and connection with superconductivity. Here we use inelastic neutron scattering to show that while electron doping to the antiferromagnetic BaFe2As2 parent compound modifies the low-energy spin excitations and their correlation with superconductivity (<50 meV) without affecting the high-energy spin excitations (>100 meV), hole-doping suppresses the high-energy spin excitations and shifts the magnetic spectral weight to low-energies. In addition, our absolute spin susceptibility measurements for the optimally hole-doped iron pnictide reveal that the change in magnetic exchange energy below and above T(c) can account for the superconducting condensation energy. These results suggest that high-T(c) superconductivity in iron pnictides is associated with both the presence of high-energy spin excitations and a coupling between low-energy spin excitations and itinerant electrons.

4.
Nat Commun ; 2: 580, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22146399

RESUMO

The parent compounds of iron pnictide superconductors are bad metals with a collinear antiferromagnetic structure and Néel temperatures below 220 K. Although alkaline iron selenide A(y)Fe(1.6+x)Se(2) (A=K, Rb, Cs) superconductors are isostructural with iron pnictides, in the vicinity of the undoped limit they are insulators, forming a block antiferromagnetic order and having Néel temperatures of roughly 500 K. Here we show that the spin waves of the insulating antiferromagnet Rb(0.89)Fe(1.58)Se(2) can be accurately described by a local moment Heisenberg Hamiltonian. A fitting analysis of the spin wave spectra reveals that the next-nearest neighbour couplings in Rb(0.89)Fe(1.58)Se(2), (Ba,Ca,Sr)Fe(2)As(2), and Fe(1.05)Te are of similar magnitude. Our results suggest a common origin for the magnetism of all the Fe-based superconductors, despite having different ground states and antiferromagnetic orderings.


Assuntos
Físico-Química , Compostos Ferrosos/química , Ferro/química , Magnetismo/métodos , Cristalografia por Raios X , Condutividade Elétrica , Elétrons , Estrutura Molecular , Rubídio/química , Selênio/química , Temperatura , Termodinâmica
5.
Sci Rep ; 1: 115, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355632

RESUMO

We report inelastic neutron scattering experiments on single crystals of superconducting Ba(0.67)K(0.33)Fe(2)As(2) (T(c) = 38 K). In addition to confirming the resonance previously found in powder samples, we find that spin excitations in the normal state form longitudinally elongated ellipses along the Q(AFM) direction in momentum space, consistent with density functional theory predictions. On cooling below T(c), while the resonance preserves its momentum anisotropy as expected, spin excitations at energies below the resonance become essentially isotropic in the in-plane momentum space and dramatically increase their correlation length. These results suggest that the superconducting gap structures in Ba(0.67)Ka(0.33)Fe(2)As(2) are more complicated than those suggested from angle resolved photoemission experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA