Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phys Chem Chem Phys ; 26(11): 9051-9059, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38441317

RESUMO

Tuning the polarity of charge carriers at a single-molecular level is essential for designing complementary logic circuits in the field of molecular electronics. Herein, the transport properties of N-heterocyclic carbene (NHC)-linked single-molecule junctions are investigated using the ab initio quantum transport approach. The results reveal that the hydrogen atoms in NHCs function as a switch for regulating the polarity of charge carriers. Dehydrogenation changes the chemical nature of NHC anchors, thereby rendering holes as the major charge carriers rather than electrons. Essentially, dehydrogenation changes the anchoring group from electron-rich to electron-deficient. The electrons transferred to molecules from the electrodes raise the molecular level closer to the Fermi level, thus resulting in charge carrier polarity conversion. This conversion is influenced by the position and number of hydrogen atoms in the NHC anchors. To efficiently and decisively alter charge carrier polarity via atomic manipulation, a methyl substitution approach is developed and verified. These results confirm that atomic manipulation is a significant method for modulating the polarity of charge carriers in NHC-based single-molecule devices.

2.
Eur Spine J ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869650

RESUMO

PURPOSE: This study aims to explore the differences in cervical degeneration between healthy people with and without cervical flexion-relaxation phenomenon (FRP) and to identify whether the disappearance of cervical FRP is related to cervical degeneration. METHODS: According to the flexion relaxation ratio (FRR), healthy subjects were divided into the normal FRP group and the abnormal FRP group. Besides, MRI was used to evaluate the degeneration of the passive subsystem (vertebral body, intervertebral disc, cervical sagittal balance, etc.) and the active subsystem (deep flexors [DEs], deep extensors [DFs], and superficial extensors [SEs]). In addition, the correlation of the FRR with the cervical degeneration score, C2-7Cobb, Borden method, relative total cross-sectional area (rTCSA), relative functional cross-sectional area (rFCSA), and fatty infiltration ratio (FIR) was analyzed. RESULTS: A total of 128 healthy subjects were divided into the normal FRP group (n=52, 40.63%) and the abnormal FRP group (n=76, 59.38%). There were significant differences between the normal FRP group and the abnormal FRP group in the cervical degeneration score (z=-6.819, P<0.001), C2-7Cobb (t=2.994, P=0.004), Borden method (t=2.811, P=0.006), and FIR of DEs (t=-4.322, P<0.001). The FRR was significantly correlated with the cervical degeneration score (r=-0.457, P<0.001), C2-7Cobb (r=0.228, P=0.010), Borden method (r=0.197, P=0.026), and FIR of DEs (r=-0.253, P=0.004). CONCLUSION: The disappearance of cervical FRP is related to cervical degeneration. A new hypothesis mechanism for FRP is proposed. The cervical FRP test is an effective and noninvasive examination for the differential diagnosis of healthy people, people with potential NSNP, and patients with NSNP.

3.
Phys Chem Chem Phys ; 25(19): 13673-13682, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37158005

RESUMO

The understanding of the interfacial effect on charge transport is essential in single-molecule electronics. In this study, we elucidated the transport properties of molecular junctions comprising thiol-terminated oligosilane with three to eight Si atoms and two types of Ag/Au electrode materials employing different interfacial configurations. First-principles quantum transport calculations demonstrated that the interfacial configuration determines the relative magnitude of the current between the Ag and Au electrodes, wherein the Ag monoatomic contact configuration presented a larger current than did the Au double-atom configuration. Further, the mechanism of electron tunneling from the interfacial states through the central σ channel was revealed. In contrast to Au double-atom electrodes, Ag monoatomic electrodes exhibit a higher current due to the presence of Ag-S interfacial states closer to the Fermi level. Our findings show that the interfacial configuration is a plausible way to generate the relative magnitude of current of thiol-terminated oligosilane molecular junctions with Au/Ag electrodes and provide further insight into the interfacial effect on the transport properties.

4.
Phys Chem Chem Phys ; 25(16): 11545-11554, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37039540

RESUMO

Monolayer (ML) PtSe2 is a two-dimensional (2D) semiconductor with a modest band gap and high carrier mobility, and it is a promising 2D material for electronic devices. Finding suitable metal electrodes is a key factor in fabricating high-performance PtSe2 field effect transistors (FETs). In this study, a series of 2D metals, transition metal dichalcogenides (NbSe2, TaS2), borophene, and MXenes (V2C(OH)2, V2CF2, Nb2C(OH)2, Nb2CF2, Nb2CO2, Hf2C(OH)2, Hf2CF2) were used as electrodes for FET fabrication. The interfacial electronic properties of electrodes and PtSe2 were studied in both the vertical and lateral directions using the ab initio method. In the vertical direction, PtSe2 formed ohmic contacts with most of the 2D metals except for Nb2CF2 and Hf2CF2. Specifically, in the cases of Nb2CF2 and Hf2CF2, p- and n-type Schottky contacts were formed with Schottky barrier heights (SBHs) of 0.48 eV and 0.02 eV, respectively. In the lateral direction, PtSe2 with contacting Hf2CF2 and V2C(OH)2 electrodes formed n-type Schottky contacts with SBHs of 0.14 eV and 0.09 eV, respectively. In the cases of TaS2 and Nb2CF2 electrodes, p-type Schottky contacts with SBHs of 0.35 eV and 0.29 eV, respectively, were formed. Moreover, n-type ohmic contacts were observed when Hf2C(OH)2 and Nb2C(OH)2 electrodes were applied, and p-type ohmic contacts were formed when borophene, NbSe2, Nb2CO2, and V2CF2 electrodes were used. This work reports a systematic investigation of ML PtSe2-2D metal interfaces and serves as a practical guide for selecting electrode materials for PtSe2 FETs.

5.
Phys Chem Chem Phys ; 24(3): 1849-1859, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34988568

RESUMO

The spin-resolved transport properties of molecular logic devices composed of two Mn porphyrin molecules connected to each other via a six-carbon atomic chain were studied using the non-equilibrium Green's function combined with density functional theory. The molecules were symmetrically connected to armchair graphene nanoribbon electrodes through four-carbon atomic chains on the left- and right-hand sides. Our calculations revealed that the spin-resolved current-voltage curves depend on the initial spin setting of the transition metal Mn atoms and carbon atoms on the zigzag edges where the electrodes come in contact with the molecule. By simultaneously regulating the spin orientations of the intermediate functional molecules and the zigzag edges of the armchair graphene nanoribbon electrodes, seven spin polarization configurations were obtained. These configurations were examined in this study considering the spin-related symmetry of molecular junctions. By meticulously selecting different combinations according to the specific input and output signals, YES, NOT, OR, NOR, and XOR multifarious spin logic devices were created. The findings of this study are expected to contribute toward the extension of molecular junction functions in future spintronic integrated circuit design and further miniaturization.

6.
Nanotechnology ; 31(22): 225705, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31995789

RESUMO

Monolayer (ML) graphdiyne, a two-dimensional semiconductor with appropriate band gap and high carrier mobility, is a promising candidate for channel material in field effect transistors (FETs). Using density functional theory combined with non-equilibrium Green's function method, we systematically investigate the contact and transport properties of graphdiyne FETs with various electrodes, including metals (Cu, Au, Ni, Al and Ag) and MXenes (Cr2C, Ta2C and V2C). Strong interaction can be found between ML graphdiyne and the Cu, Ni and MXenes electrodes with indistinguishable band structure of ML graphdiyne, while weak or medium interaction exists in the contacts of ML graphdiyne and the Au, Al and Ag electrodes where the band structure of ML graphdiyne remains intact. Despite the different contact interactions, Ohmic contacts are generated with all considered electrode materials owing to the weak Fermi level pinning of graphdiyne. The linear I-V characteristic curve verifies the Ohmic contact between Au electrode and graphdiyne ultimately. The theoretically calculated Schottky barrier heights of graphdiyne with Cu electrode are consistent with the available experimental data. Our calculation suggests that graphdiyne is an excellent channel material of FETs forming desired Ohmic contacts with wide-ranging electrodes and thus is promising to fabricate high performance FETs.

7.
Phys Chem Chem Phys ; 22(48): 28074-28085, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33289744

RESUMO

Monolayer C2N is promising for next-generation electronic and optoelectronic applications due to its appropriate band gap and high carrier efficiency. However, relative studies have been held back due to the lack of high-quality electrode contacts. Here, we comprehensively study the electronic and transport properties of monolayer C2N with a series of electrode materials (Al, Ti, Ni, Cu, Ag, Pt, V2C, Cr2C and graphene) by using the nonequilibrium Green's function (NEGF) method combined with density functional theory (DFT). The monolayer C2N forms Ohmic contacts with the Ti/Cu/Ag electrode material in both armchair and zigzag directions, whereas Ohmic contact is only formed in the zigzag direction of the C2N-Al field effect transistor. However, the C2N-Ni, -Pt, -V2C, -Mo2C, -graphene contact systems form n-type Schottky contacts in either the armchair or zigzag direction owing to the relatively strong Fermi level pinning (the pinning factor S = 0.32 in the armchair direction and S = 0.26 in the zigzag direction). By insertion of BN or graphene between the C2N and Pt electrode in the armchair direction of contact systems, the Fermi level pinning can be effectively weakened due to the suppression of metal-induced gap states. Conspicuously, an Ohmic contact is realized in the C2N field effect transistors with the BN-Pt electrode, suggesting a possible approach to fabricating high-performance devices. Our study is conducive to selecting appropriate electrode materials for C2N-based field effect transistors.

8.
J Chem Phys ; 148(18): 184703, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29764150

RESUMO

The relationship between the molecular structure and the electronic transport properties of molecular junctions based on thiol-terminated oligoethers, which are obtained by replacing every third methylene unit in the corresponding alkanethiols with an oxygen atom, is investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias conductance depends strongly on the conformation of the oligoethers in the junction. Specifically, in the cases of trans-extended conformation, the oxygen-dominated transmission peaks are very sharp and well below the Fermi energy, EF, thus hardly affect the transmission around EF; the Au-S interface hybrid states couple with σ-bonds in the molecular backbone forming the conduction channel at EF, resulting in a conductance decay against the molecular length close to that for alkanethiols. By contrast, for junctions with oligoethers in helical conformations, some π-type oxygen orbitals coupling with the Au-S interface hybrid states contribute to the transmission around EF. The molecule-electrode electronic coupling is also enhanced at the non-thiol side due to the specific spatial orientation introduced by the twist of the molecular backbone. This leads to a much smaller conductance decay constant. Our findings highlight the important role of the molecular conformation of oligoethers in their electronic transport properties and are also helpful for the design of molecular wires with heteroatom-substituted alkanethiols.

9.
J Chem Phys ; 147(5): 054702, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28789544

RESUMO

The atomic structure and electronic transport properties of two types of molecular junctions, in which a series of saturated and conjugated molecules are symmetrically connected to gold electrodes through methylsulfide groups, are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias junction conductance is determined by the electronic tunneling between the two Au-S donor-acceptor bonds formed at the molecule-electrode interfaces. For alkanes with 4, 6, and 8 carbon atoms in the chain, the Au-S bonds moderately couple with the σ-type frontier molecular orbitals of the alkane backbone and thus prefer to be coplanar with the alkane backbone in the junction. This results in an exponential decrease of the junction conductance as a function of the number of methylene groups. In contrast, the Au-S bonds couple strongly with the π-type orbitals of the 1,4'-bis(methylsulfide)benzene and 4,4'-bis(methylsulfide)biphenyl molecules and thus tend to be perpendicular to the neighboring benzene rings, leading to the rather large junction conductance. Our findings contribute to the understanding of the low-bias conducting mechanism and facilitate the design of molecular electronic devices with methylsulfide groups and gold electrodes.

10.
J Chem Phys ; 141(19): 194702, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25416900

RESUMO

Besides the peak at one conductance quantum, G0, two additional features at ∼0.4 G0 and ∼1.3 G0 have been observed in the conductance histograms of silver quantum point contacts at room temperature in ambient conditions. In order to understand such feature, here we investigate the electronic transport and mechanical properties of clean and oxygen-doped silver atomic contacts by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that, unlike clean Ag single-atom contacts showing a conductance of 1 G0, the low-bias conductance of oxygen-doped Ag atomic contacts depends on the number of oxygen impurities and their binding configuration. When one oxygen atom binds to an Ag monatomic chain sandwiched between two Ag electrodes, the low-bias conductance of the junction always decreases. In contrast, when the number of oxygen impurities is two and the O-O axis is perpendicular to the Ag-Ag axis, the transmission coefficients at the Fermi level are, respectively, calculated to be 1.44 for the junction with Ag(111) electrodes and 1.24 for that with Ag(100) electrodes, both in good agreement with the measured value of ∼1.3 G0. The calculated rupture force (1.60 nN for the junction with Ag(111) electrodes) is also consistent with the experimental value (1.66 ± 0.09 nN), confirming that the measured ∼1.3 G0 conductance should originate from Ag single-atom contacts doped with two oxygen atoms in a perpendicular configuration.

11.
J Chem Phys ; 141(17): 174702, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381533

RESUMO

The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

12.
World Neurosurg ; 182: e171-e177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000674

RESUMO

OBJECTIVE: The objective of this study was to determine whether abdominal fat status correlates with low back pain (LBP) and lumbar intervertebral disc degeneration (IVDD) and to identify a new anthropometric index to predict the likelihood of developing LBP. METHODS: Patients with chronic low back pain admitted to the Affiliated Hospital of Southwest Medical University from June 2022 to May 2023 were collected as the experimental group. Volunteers without LBP from June 2022 to May 2023 were also recruited as the control group. They underwent lumbar spine magnetic resonance imaging and had their body mass index (BMI) measured. Abdominal parameters were measured on T2-weighted median sagittal magnetic resonance imaging at the L3/4 level: abdominal diameter, sagittal abdominal diameter (SAD), and subcutaneous abdominal fat thickness (SAFT). Each lumbar IVDD was assessed using the Pfirrmann grading system. The differences in abdominal parameters and BMI between the experimental and control groups were compared, and the correlations between abdominal parameters, BMI, LBP, and IVDD were analyzed. RESULTS: Abdominal diameter, SAD, and SAFT had moderate-to-strong correlations with BMI. SAD was significantly associated with severe IVDD at L4-L5 and L5-S1 levels with odds ratio of 3.201 (95% confidence interval [CI]: 1.850-5.539, P < 0.001) and 1.596 (95% CI: 1.072-2.378, P = 0.021), respectively. BMI had no significant association with severe IVDD. In women, SAFT and BMI were significantly correlated with LBP; in men, only SAFT was significantly correlated with LBP. Appropriate cutoff values for men and women were 1.52 cm (area under the curve = 0.702, 95% CI: 0.615-0.789, P < 0.001) and 1.97 cm (area under the curve = 0.740, 95% CI: 0.662-0.818, P < 0.001), respectively. Men and women with SAFT of >1.52 cm and >1.97 cm, respectively, had significantly higher rates of LBP. CONCLUSIONS: SAD could predict severe IVDD better than BMI. SAFT is a better predictor of LBP than BMI, especially in men, and reliably distinguished patients with LBP from asymptomatic subjects with reliable cutoff values for men and women.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Masculino , Humanos , Feminino , Degeneração do Disco Intervertebral/complicações , Dor Lombar/etiologia , Dor Lombar/complicações , Índice de Massa Corporal , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética , Gordura Abdominal/diagnóstico por imagem , Disco Intervertebral/patologia
13.
World Neurosurg ; 178: e265-e274, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37473868

RESUMO

BACKGROUND: This prospective cohort study aimed to assess the influence of the number of fused segments in cervical paravertebral muscles by comparing the changes of the cervical flexion relaxation phenomenon (FRP) after single-level versus multilevel anterior cervical discectomy and fusion (ACDF). METHODS: A total of 115 patients who had undergone ACDF were retrospectively recruited and divided into a 1-level group (n = 44), a 2-level group (n = 40) and a 3- to 4-level group (n = 31). The flexion relaxation experiment was carried out 3 days preoperatively and 12 months postoperatively by surface electromyography (SEMG). Patients were examined using the neck visual analog scale, cervical Japanese Orthopedic Association score, Neck Disability Index, and C2-C7 range of motion (ROM). RESULTS: There was a significant difference in the time-related changes in flexion relaxation ratio (FRR) among the 3 study groups before and after surgery (F = 85.701; P < .001). Thirty-five patients (79.55%) with 1-level ACDF and 11 patients (27.5%) with 2-level ACDF had FRP were restored to normal at 12 months postoperatively; however, only 1 patient (3.33%) had normalized FRP after 3- to 4-level ACDF. There were significant differences in the time-related changes of the normalized SEMG root mean square values in each phase before and after surgery (P = .018, <.001, <.001, and <.001). A significant correlation was found between the changes in C2-C7 ROM and FRR in the 3 study groups (P = .007 for 1 level, P = .003 for 2 levels, and P = .036 for 3-4 levels). CONCLUSIONS: Single-level ACDF contributes to normalizing the FRP of cervical paravertebral muscles, which is not ideally recovered by 2-level ACDF. In contrast, 3- or 4-level ACDF could not normalize the cervical FRP. Our research supports the passive structure hypothesis.


Assuntos
Vértebras Cervicais , Fusão Vertebral , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Resultado do Tratamento , Vértebras Cervicais/cirurgia , Discotomia , Amplitude de Movimento Articular/fisiologia
14.
J Colloid Interface Sci ; 607(Pt 2): 1876-1887, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34695737

RESUMO

The design and construction of bifunctional electrocatalysts with high activity and durability is essential for overall water splitting. Herein, a unique 3D hierarchical NiMo3S4 nanoflowers with abundant defects and reactive sites were grown directly on carbon textiles (NiMo3S4/CTs) using a facile hydrothermal synthesis method. The defect-rich NiMo3S4 nanoflakes, prepared by doping Ni2+ in the lattice of Mo-S, displays extended d-spacing of (002) crystal plane, resulting in the electrocatalytic activity of hydrogen evolution and oxygen evolution reaction (HER and OER) was improved under alkaline conditions. The self-supported NiMo3S4/CTs electrode delivers a small overpotential of 149.5 mV for HER and 126.2 mV for OER at 10 mA cm-2, respectively. Based on detailed structure analysis and density functional theory (DFT) calculations, the excellent HER and OER activities can be attributed to the unique structure of the nanoflowers, where the metallic characteristics for Ni-doped Mo-S lead to the enhancement of intrinsic conductivity and the rich abundance of Ni3+ active sites. As a result, the NiMo3S4/CTs as efficient bifunctional electrocatalysts for overall water-splitting was performed in alkaline electrolyte, where the system required only 1.55, 1.66 and 1.76 V to deliver current densities of 10, 50 and 100 mA cm-2, respectively. This study provides a new method for improving the electrocatalysis properties of transition metal sulfides by metal-ion doping to generate more active defect sites, thus promoting the development of non-noble-metal electrocatalysts for overall water splitting.

15.
Rev Port Cardiol ; 41(5): 417-423, 2022 May.
Artigo em Inglês, Português | MEDLINE | ID: mdl-36062643

RESUMO

This work explores correlations between genetic polymorphisms in apolipoprotein E (ApoE) and atrial fibrillation (AF). We detected polymorphisms in the APOE gene in 64 patients with AF and 49 non-AF volunteers at the Department of Cardiology of Lianyungang Second People's Hospital between July 2017 and July 2019. We found significant differences in age, body mass index, left atrial diameter, and left ventricular ejection fraction between the two groups. Six APOE genotypes were observed: ɛ2/ɛ2; ɛ2/ɛ3; ɛ2/ɛ4; ɛ3/ɛ3; ɛ3/ɛ4; and ɛ4/ɛ4. The ɛ3/ɛ3 genotype was significantly less frequent in the AF group than in the control group, while the ɛ3/ɛ4 and ɛ4/ɛ4 genotypes were significantly more frequent in the AF group than in the control group (p<0.05). ApoE3 penetrance was significantly lower in the AF group than in the control group (p<0.05), while ApoE4 penetrance was significantly higher in the AF group than in the control group (p<0.05). ApoE3 penetrance was significantly lower in the AF group than in the control group (p<0.05). Binary logistic regression analysis showed that age, body mass index, left atrial diameter, left ventricular ejection fraction, and ApoE4 were risk factors for AF. Finally, we found that ApoE polymorphisms impacted the occurrence of AF and that ApoE4 is an AF-sensitive phenotype.

16.
J Colloid Interface Sci ; 614: 267-276, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101674

RESUMO

The stacking of Molybdenum Diselenide (MoSe2) nanomaterials as well as its poor intrinsic conductivity lead to sluggish water dissociation kinetics, which limit the performance of the alkaline hydrogen evolution reaction (HER). Herein, we constructed Nickel Hydroxide Ni(OH)2-MoSe2 heterostructures directly on 3D self-supporting carbon cloth (CC) substrate via a simple hydrothermal and the subsequent chemical bath deposition process, then systemically studied the effect of the Ni(OH)2 deposition time on the HER performance. The synergistic effect between Ni(OH)2 and MoSe2 in the Ni(OH)2-MoSe2 heterostructures optimizes the poor conductivity and Gibbs free energy for water adsorption, thus improving the water dissociation kinetics and giving rise to fast electron transfer in the HER process. The Ni(OH)2-MoSe2/CC constructed in this way with a Ni(OH)2 deposition times of 30 min performs good catalytic activities with a low overpotential of 130 mV at -10 mA cm-2, a low Tafel slope of 78.2 mV dec-1 and good stability. Our results suggest that interface engineering combining with conductive substrate are conducive to enhance alkaline HER activity of MoSe2 and other similar transition metal dichalcogenides.

17.
J Oncol ; 2021: 6365459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630565

RESUMO

Pyroptosis is a kind of programmed cell death that is characterized by inflammation. However, the expression of pyroptosis-related genes and their connection with prognosis in lung adenocarcinoma (LUAD) remain unknown. The aim of this study is to create and validate a LUAD prediction signature based on genes associated with pyroptosis. The TCGA and GEO were used to collect gene sequencing data and clinical information for LUAD samples. To identify patients with LUAD from the TCGA cohort, consensus clustering by pyroptosis-related genes was employed. Our prognostic model was constructed using LASSO-Cox analysis after Cox regression using differentially expressed genes. To predict patient survival, we created a seven-mRNA signature. Additionally, reliability and validity were established in the GEO cohort. To assess its diagnostic and prognostic usefulness, an integrated bioinformatics method was used. Using a risk score with varying overall survival (OS) in two cohorts (all p < 0.001), a seven-gene signature was developed to categorize patients into two risk categories. The signature was shown to be an independent predictor of LUAD using multivariate regression analysis. The signature was linked to a variety of immune cell subtypes according to a study of immune cell infiltration. We constructed a signature consisting of seven genes as a robust biomarker with potential for clinical use in risk stratification and OS prediction in LUAD patients, as well as a potential indicator of immunotherapy in LUAD.

18.
Shanghai Kou Qiang Yi Xue ; 29(6): 651-655, 2020 Dec.
Artigo em Zh | MEDLINE | ID: mdl-33778836

RESUMO

PURPOSE: To explore the effects of different orthodontic techniques on the changes of alveolar bone density, height and gingival crevicular fluid (GCF) bleeding in upper incisor in patients with periodontitis. METHODS: Twenty-three patients with moderate periodontitis who underwent orthodontic treatment from January 2016 to December 2019 in the Department of Stomatology of Jiangxi Pingxiang People's Hospital were divided into experimentalexperimental group(n=12) and control group(n=11). Patients in the experimental group were treated with bracket-less invisible appliance, while patients in the control group were treated with conventional lip-side fixed appliance. Changes of gingival crevicular hemorrhage index, probing depth, alveolar bone height and bone density in the incisor area were compared between the two groups before and after treatment. Statistical analysis was performed on data using SPSS 22.0 software package. RESULTS: After treatment, the bone mineral density of the upper incisor alveolar crest (L1) of the two groups decreased, and the rate of decrease in the experimental group was significantly less than that in the control group (P<0.05). The bone density at the apical point of the anatomical root of the control group at 1 mm (L3) was also significantly reduced, but there was no significant change in the experimental group. There was no significant change in the alveolar bone height of the upper incisor area between the two groups before and after treatment (P>0.05). Root resorption of the upper incisors in the experimental group was significantly lower than that in the control group(P<0.05). After treatment, the probing depth and GCF bleeding index of the two groups decreased, and the change in the experimental group was significantly greater than that in the control group(P<0.05). CONCLUSIONS: Bracket-free invisible appliance for periodontitis is more conducive to the restoration of alveolar bone mineral density in the upper incisor than the conventional lip-side fixed appliance, and both of which have the same effect on bone height and are safe and effective orthodontic treatment.


Assuntos
Periodontite , Reabsorção da Raiz , Tomografia Computadorizada de Feixe Cônico , Humanos , Incisivo/diagnóstico por imagem , Maxila , Periodontite/diagnóstico por imagem , Periodontite/terapia
19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 31(4): 518-22, 2006 Aug.
Artigo em Zh | MEDLINE | ID: mdl-16951509

RESUMO

OBJECTIVE: To determine the effect of continuously compressive pressure (CCP) on the expression of receptor activator of nuclear factor kappa B ligand (RANKL) in human periodontal ligament cells (HPDLCs) and to investigate the role of RANKL in alveolar bone rebuilding during orthodontic tooth movement. METHODS: The primary HPDLCs were isolated from human periodontal ligament by explanting enzymatic digestion with trypsin and collagenase to establish a pressure model. Top-bottom axial pressures (1, 2, and 3 g/cm(2)) were laid on HPDLCs for 0.5, 1.5, 6, 12, 24, and 48 h, respectively. The RANKL expression was identified by the reverse transcription-polymerase chain reaction (RT-PCR) at the mRNA level. RESULTS: The expression of RANKL mRNA significantly increased in a time-dependent manner (P<0.01), so did the value of pressure, especially in the 2 g/cm(2) group (P<0.05). CONCLUSION: CCP can up-regulate the expression of RANKL mRNA in human periodontal ligament cells.


Assuntos
Ligamento Periodontal/metabolismo , Ligante RANK/biossíntese , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Força Compressiva , Humanos , Ligamento Periodontal/citologia , Ligante RANK/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Estresse Mecânico
20.
FEBS Open Bio ; 5: 852-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26636027

RESUMO

Published data regarding the association between Apolipoprotein E (ApoE) genetic variation and myocardial infarction (MI) risk were not always consistent. Therefore, the current meta-analysis was conducted to derive a more precise estimation of the association between ApoE polymorphism and MI risk. PubMed and Web of Science were searched to identify relevant studies. Summary odds ratio (ORs) and 95% confidence intervals (CIs) were calculated using random-effect or fixed-effect models based on the heterogeneity of included studies. All the tests were performed using Stata 11.0. A total of 22 eligible studies were identified in this meta-analysis. The results show that ApoE ε2 and ε4 alleles were associated with MI risk. The study suggests that there is close association between ApoE polymorphism and MI risk. It shows that ApoE ε2 allele is a protective factor of MI, while ε4 allele is a risk factor of MI, especially in Caucasian and Asian population. Nevertheless, well-designed, unbiased and larger sample size studies are required to confirm the results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA