Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 90(5): 2372-87, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676770

RESUMO

UNLABELLED: The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE: Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates.


Assuntos
Antivirais/farmacologia , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Fatores Imunológicos/isolamento & purificação , Carga Viral , Cultura de Vírus
2.
J Virol ; 86(13): 7334-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532686

RESUMO

There is a growing need for novel antiviral therapies that are broad spectrum, effective, and not subject to resistance due to viral mutations. Using high-throughput screening methods, including computational docking studies and an interferon-stimulated gene 54 (ISG54)-luciferase reporter assay, we identified a class of isoflavone compounds that act as specific agonists of innate immune signaling pathways and cause activation of the interferon regulatory factor (IRF-3) transcription factor. The isoflavone compounds activated the ISG54 promoter, mediated nuclear translocation of IRF-3, and displayed highly potent activity against hepatitis C virus (HCV) and influenza virus. Additionally, these agonists efficiently activated IRF-3 in the presence of the HCV protease NS3-4A, which is known to blunt the host immune response. Furthermore, genomic studies showed that discrete innate immune pathways centered on IRF signaling were regulated following agonist treatment without causing global changes in host gene expression. Following treatment, the expression of only 64 cellular genes was significantly induced. This report provides the first evidence that innate immune pathways dependent on IRF-3 can be successfully targeted by small-molecule drugs for the development of novel broad-spectrum antiviral compounds.


Assuntos
Antivirais/metabolismo , Hepacivirus/imunologia , Fatores Imunológicos/metabolismo , Fator Regulador 3 de Interferon/biossíntese , Isoflavonas/agonistas , Orthomyxoviridae/imunologia , Transdução de Sinais/efeitos dos fármacos , Hepacivirus/fisiologia , Humanos , Imunidade Inata , Orthomyxoviridae/fisiologia , Transporte Proteico , Replicação Viral
3.
Mol Cancer Res ; 5(11): 1181-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17982115

RESUMO

The transcription factor c-Myc is implicated in the pathogenesis of many cancers. Among the multiple functions of c-Myc, activation of hTert and other genes involved in cellular life span contributes to its role as an oncogene. However, the ability of c-Myc to directly immortalize human cells remains controversial. We show here that overexpression of c-Myc reproducibly immortalizes freshly isolated human foreskin fibroblasts. c-Myc-immortalized cells displayed no gross karyotypic abnormalities but consisted of an oligoclonal population, suggesting that additional events cooperated to achieve immortalization. Levels of p53 and p16 were increased, but both p53-dependent DNA damage response and growth arrest in response to p16 overexpression remained intact. A marked decrease in expression of the tumor suppressor ARF occurred in several independently established c-Myc-immortalized cell lines. Methylation-specific PCR showed that the ARF gene was methylated in immortalized but not early-passage c-Myc cells, whereas p16 was unmethylated in both cell populations. Restoration of ARF expression by treatment with a demethylating agent or overexpression by a retroviral vector coincided with inhibition of proliferation and senescence of c-Myc-immortalized cells. Our findings predict that epigenetic events play a significant role in human tumors that express high levels of c-Myc.


Assuntos
Epigênese Genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p14ARF/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilação de DNA , Regulação para Baixo , Fibroblastos/metabolismo , Humanos , Cariotipagem , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética
4.
Cell Cycle ; 10(15): 2540-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21720214

RESUMO

Cancer cells exhibit the ability to proliferate indefinitely, but paradoxically, overexpression of cellular oncogenes in primary cells can result in a rapid and irreversible cell cycle arrest known as oncogene-induced senescence (OIS). However, we have shown that constitutive overexpression of the oncogene c-MYC in primary human foreskin fibroblasts results in a population of cells with unlimited lifespan; these immortalized cells are henceforth referred to as iMYC. Here, in order to further elucidate the mechanisms underlying the immortalization process, a gene expression signature of three independently established iMYC cell lines compared to matched early passage c-MYC overexpressing cells was derived. Network analysis of this "iMYC signature" indicated that a large fraction of the down-regulated genes were functionally connected and major nodes centered around the TGFß, IL-6 and IGF-1 signaling pathways. Here, we focused on the functional validation of the alteration of TGFß response during c-MYC-mediated immortalization. The results demonstrate loss of sensitivity of iMYC cells to activation of TGFß signaling upon ligand addition. Furthermore, we show that aberrant regulation of the p27 tumor suppressor protein in iMYC cells is a key event that contributes to loss of response to TGFß. These findings highlight the potential to reveal key pathways contributing to the self-renewal of cancer cells through functional mining of the unique gene expression signature of cells immortalized by c-MYC.


Assuntos
Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA