RESUMO
Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.
Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Pólen , Pólen/genética , Pólen/fisiologia , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiologia , Infertilidade das Plantas/genética , FilogeniaRESUMO
The phosphatidylinositol-specific phospholipase Cs (PI-PLCs) catalyze the hydrolysis of phosphatidylinositols, which play crucial roles in signaling transduction during plant development and stress response. However, the regulation of PI-PLC is still poorly understood. A previous study showed that a rice PI-PLC, OsPLC1, was essential to rice salt tolerance. Here, we identified a 14-3-3 protein, OsGF14b, as an interaction partner of OsPLC1. Similar to OsPLC1, OsGF14b also positively regulates rice salt tolerance, and their interaction can be promoted by NaCl stress. OsGF14b also positively regulated the hydrolysis activity of OsPLC1, and is essential to NaCl-induced activation of rice PI-PLCs. We further discovered that OsPLC1 was degraded via ubiquitin-proteasome pathway, and OsGF14b could inhibit the ubiquitination of OsPLC1 to protect OsPLC1 from degradation. Under salt stress, the OsPLC1 protein level in osgf14b was lower than the corresponding value of WT, whereas overexpression of OsGF14b results in a significant increase of OsPLC1 stability. Taken together, we propose that OsGF14b can interact with OsPLC1 and promote its activity and stability, thereby improving rice salt tolerance. This study provides novel insights into the important roles of 14-3-3 proteins in regulating protein stability and function in response to salt stress.
Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/fisiologia , Proteínas 14-3-3/metabolismo , Oryza/fisiologia , Cloreto de Sódio/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse FisiológicoRESUMO
Garden asparagus (Asparagus officinalis L.) is a dioecious species whose male and female flowers are found in separate unisexual individuals. A region called the M-locus, located on a pair of homomorphic sex chromosomes, controls sexual dimorphism in asparagus. To date, no sex determining gene has been isolated from asparagus. To identify more genes involved in flower development in asparagus, subtractive hybridization library of male flowers in asparagus was constructed by suppression subtraction hybridization. A total of 107 expressed sequence tags (ESTs) were identified. BLASTX analysis showed that the library contained several genes that could be related to flower development. The expression patterns of seven selected genes believed to be involved in the development of asparagus male flower were further analyzed by semi-quantitative or real-time reverse-transcription polymerase chain reaction (RT-PCR). Results showed that AOEST4-5, AOEST12-40, and AOEST13-38 were strongly expressed in the male flower stage, whereas no transcript level of AOEST13-38 was detected in the female flower stage. The expression levels of AOEST13-87, AOEST13-92, AOEST13-40, and AOEST18-87 in the male flower stage were also higher than those in the female flower stage, although these transcripts were also expressed in other tissues. The identified genes can provide a strong starting point for further studies on the underlying molecular differences between the male and female flowers of asparagus.
Assuntos
Asparagus/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Asparagus/crescimento & desenvolvimento , Asparagus/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Etiquetas de Sequências Expressas , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Biblioteca Gênica , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Técnicas de Hibridização SubtrativaRESUMO
To identify rapidly a number of genes probably involved in sex determination and differentiation of the dioecious plant Asparagus officinalis, gene expression profiles in early flower development for male and female plants were investigated by microarray assay with 8,665 probes. In total, 638 male-biased and 543 female-biased genes were identified. These genes with biased-expression for male and female were involved in a variety of processes associated with molecular functions, cellular components, and biological processes, suggesting that a complex mechanism underlies the sex development of asparagus. Among the differentially expressed genes involved in the reproductive process, a number of genes associated with floral development were identified. Reverse transcription-PCR was performed for validation, and the results were largely consistent with those obtained by microarray analysis. The findings of this study might contribute to understanding of the molecular mechanisms of sex determination and differentiation in dioecious asparagus and provide a foundation for further studies of this plant.