Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
J Exp Bot ; 74(3): 1059-1073, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383488

RESUMO

Small signalling peptides play important roles in various plant processes, but information regarding their involvement in plant immunity is limited. We previously identified a novel small secreted protein in rice, called immune response peptide 1 (IRP1). Here, we studied the function of IRP1 in rice immunity. Rice plants overexpressing IRP1 enhanced resistance to the virulent rice blast fungus. Application of synthetic IRP1 to rice suspension cells triggered the expression of IRP1 itself and the defence gene phenylalanine ammonia-lyase 1 (PAL1). RNA-seq results revealed that 84% of genes up-regulated by IRP1, including 13 OsWRKY transcription factors, were also induced by a microbe-associated molecular pattern (MAMP), chitin, indicating that IRP1 and chitin share a similar signalling pathway. Co-treatment with chitin and IRP1 elevated the expression level of PAL1 and OsWRKYs in an additive manner. The increased chitin concentration arrested the induction of IRP1 and PAL1 expression by IRP1, but did not affect IRP1-triggered mitogen-activated protein kinases (MAPKs) activation. Collectively, our findings indicate that IRP1 functions as a phytocytokine in rice immunity regulating MAPKs and OsWRKYs that can amplify chitin and other signalling pathways, and provide new insights into how MAMPs and phytocytokines cooperatively regulate rice immunity.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Imunidade Vegetal/fisiologia , Transdução de Sinais/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/metabolismo , Quitina/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
2.
Molecules ; 28(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138479

RESUMO

Liver disease accounts for millions of deaths per year all over the world due to complications from cirrhosis and liver injury. In this study, a novel compound, dimethyl bisphenolate (DMB), was synthesized to investigate its role in ameliorating carbon tetrachloride (CCl4)-induced liver injury through the regulation of oxidative stress-related genes. The structure of DMB was confirmed based on its hydrogen spectrum and mass spectrometry. DMB significantly reduced the high levels of ALT, AST, DBIL, TBIL, ALP, and LDH in a dose-dependent manner in the sera of CCl4-treated rats. The protective effects of DMB on biochemical indicators were similar to those of silymarin. The ROS fluorescence intensity increased in CCl4-treated cells but significantly weakened in DMB-treated cells compared with the controls. DMB significantly increased the content of oxidative stress-related GSH, Nrf2, and GCLC dose-dependently but reduced MDA levels in CCl4-treated cells or the liver tissues of CCl4-treated rats. Moreover, DMB treatment decreased the expression levels of P53 and Bax but increased those of Bcl2. In summary, DMB demonstrated protective effects on CCl4-induced liver injury by regulating oxidative stress-related genes.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Ratos , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Estresse Oxidativo , Fígado , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
3.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234689

RESUMO

D-limonene (4-isopropenyl-1-methylcyclohexene) is an important compound in several citrus essential oils (such as orange, lemon, tangerine, lime, and grapefruit). It has been used as a flavoring agent and as a food preservative agent, with generally recognized as safe (GRAS) status. D-limonene has been well-studied for its anti-inflammatory, antioxidant, anti-cancer, and antibacterial properties. The antibacterial activity of D-limonene against food-borne pathogens was investigated in this study by preparing a D-limonene nanoemulsion. The D-limonene solution and nanoemulsion have been prepared in six concentrations, 0.04%, 0.08%, 0.1%, 0.2%, 0.4%, and 0.8% (v/v), respectively, and the antibacterial activity was tested against four food-borne pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli). The results showed that the D-limonene nanoemulsion had good nanoscale and overall particle size uniformity, and its particle size was about 3~5 nm. It has been found that the D-limonene solution and nanoemulsion have a minimal inhibitory concentration of 0.336 mg/mL, and that they could inhibit the growth of microorganisms efficiently. The data indicate that the D-limonene nanoemulsion has more antibacterial ability against microorganisms than the D-limonene essential oil. After bananas are treated with 1.0% and 1.5% D-limonene nanoemulsion coatings, the water loss of the bananas during storage and the percentage of weight loss are reduced, which can inhibit the activity of pectinase. The application of a biocoating provides a good degree of antibacterial activity and air and moisture barrier properties, which help with extending the shelf life of bananas.


Assuntos
Citrus , Filmes Comestíveis , Musa , Óleos Voláteis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Cicloexenos/farmacologia , Escherichia coli , Aromatizantes/farmacologia , Conservantes de Alimentos/farmacologia , Limoneno/farmacologia , Óleos Voláteis/farmacologia , Poligalacturonase , Terpenos/farmacologia , Água/farmacologia
4.
Plant Biotechnol J ; 18(2): 415-428, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31301098

RESUMO

Small signalling peptides, generated from larger protein precursors, are important components to orchestrate various plant processes such as development and immune responses. However, small signalling peptides involved in plant immunity remain largely unknown. Here, we developed a pipeline using transcriptomics- and proteomics-based screening to identify putative precursors of small signalling peptides: small secreted proteins (SSPs) in rice, induced by rice blast fungus Magnaporthe oryzae and its elicitor, chitin. We identified 236 SSPs including members of two known small signalling peptide families, namely rapid alkalinization factors and phytosulfokines, as well as many other protein families that are known to be involved in immunity, such as proteinase inhibitors and pathogenesis-related protein families. We also isolated 52 unannotated SSPs and among them, we found one gene which we named immune response peptide (IRP) that appeared to encode the precursor of a small signalling peptide regulating rice immunity. In rice suspension cells, the expression of IRP was induced by bacterial peptidoglycan and fungal chitin. Overexpression of IRP enhanced the expression of a defence gene, PAL1 and induced the activation of the MAPKs in rice suspension cells. Moreover, the IRP protein level increased in suspension cell medium after chitin treatment. Collectively, we established a simple and efficient pipeline to discover SSP candidates that probably play important roles in rice immunity and identified 52 unannotated SSPs that may be useful for further elucidation of rice immunity. Our method can be applied to identify SSPs that are involved not only in immunity but also in other plant functions.


Assuntos
Regulação da Expressão Gênica de Plantas , Magnaporthe , Oryza , Peptídeos , Transcriptoma , Magnaporthe/fisiologia , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/isolamento & purificação , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteômica
5.
Pharmazie ; 75(6): 250-254, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32539920

RESUMO

Resveratrol (trans-3,4'V,5-trihydroxystilbene) presents antioxidant, anti-inflammatory, and cardioprotective functions in addition to its anticancer potential. In this study, we explored how resveratrol, as an anticancer agent, effectively influences cervical cancer HeLa cells. Our data showed that resveratrol could significantly inhibit HeLa cell proliferation and induce their apoptosis, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay and flow cytometry. The immunofluorescence staining results in the present study suggested that resveratrol could facilitate FOXO3a nuclear translocation. We then focused on the mechanism of resveratrol in promoting HeLa cell apoptosis. The following experiments suggested that the possible initial mechanism involves the upregulation Forkhead box O (FOXO) 3a expression, which further increases the expression of Bcl-2 interacting mediator of cell death (BIM), the gene transcribed in apoptosis. Resveratrol could also inactivate the basal extracellular signal-regulated kinase (ERK) activity, causing FOXO3a activation and resulting in HeLa cell apoptosis. In summary, both mechanisms stimulated the accumulation of activated FOXO3a, promoted its nuclear translocation, and ultimately caused HeLa cell apoptosis. Thus, resveratrol may have a potential in the treatment of cervical cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Resveratrol/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Transporte Proteico/efeitos dos fármacos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
6.
J Cell Mol Med ; 20(6): 1159-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26840039

RESUMO

Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM.


Assuntos
Ciclina D2/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glucose/toxicidade , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Aorta/citologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Proliferação de Células/efeitos dos fármacos , Ciclina D2/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , MicroRNAs/genética , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
7.
J Cell Mol Med ; 19(5): 1103-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25704671

RESUMO

Pulmonary fibrosis (PF) is a disease with an unknown cause and a poor prognosis. In this study, we aimed to explore the pathogenesis of PF and the mechanism of sulindac in attenuating bleomycin (BLM)-induced PF. The rat PF model was induced by BLM and verified through histological studies and hydroxyproline assay. The severity of BLM-induced PF in rats and other effects, such as the extent of the wet lung to bw ratios, thickening of alveolar interval or collagen deposition, was obviously ameliorated in sulindac-treated rat lungs compared with BLM-induced lungs. Sulindac also reversed the epithelial mesenchymal transition (EMT) and inhibited the PF process by restoring the levels of E-cadherin and α-smooth muscle actin (SMA) in A549 cells. Our results further demonstrated that the above effects of sulindac might be related to regulating of interferon gamma (IFN-γ) expression, which further affects signal transducers and activators of transcription 3 (STAT3) and phosphorylated STAT3 (p-STAT3) levels. Moreover, higher miR-21 levels with the decreased E-cadherin and increased α-SMA expressions were found in transforming growth factor-ß1-treated A549 cells, which can be reversed by sulindac. Collectively, our results demonstrate that by decreasing IFN-γ-induced STAT3/p-STAT3 expression to down-regulate miR-21, sulindac could significantly reverse EMT in A549 cells and prevent BLM-induced PF.


Assuntos
Pulmão/efeitos dos fármacos , MicroRNAs/genética , Fibrose Pulmonar/prevenção & controle , Fator de Transcrição STAT3/metabolismo , Sulindaco/farmacologia , Actinas/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Bleomicina , Western Blotting , Caderinas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon gama/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Microscopia de Fluorescência , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
8.
Plant Physiol ; 161(1): 521-34, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23154534

RESUMO

Divinyl reductase (DVR) converts 8-vinyl groups on various chlorophyll intermediates to ethyl groups, which is indispensable for chlorophyll biosynthesis. To date, five DVR activities have been detected, but adequate evidence of enzymatic assays using purified or recombinant DVR proteins has not been demonstrated, and it is unclear whether one or multiple enzymes catalyze these activities. In this study, we systematically carried out enzymatic assays using four recombinant DVR proteins and five divinyl substrates and then investigated the in vivo accumulation of various chlorophyll intermediates in rice (Oryza sativa), maize (Zea mays), and cucumber (Cucumis sativus). The results demonstrated that both rice and maize DVR proteins can convert all of the five divinyl substrates to corresponding monovinyl compounds, while both cucumber and Arabidopsis (Arabidopsis thaliana) DVR proteins can convert three of them. Meanwhile, the OsDVR (Os03g22780)-inactivated 824ys mutant of rice exclusively accumulated divinyl chlorophylls in its various organs during different developmental stages. Collectively, we conclude that a single DVR with broad substrate specificity is responsible for reducing the 8-vinyl groups of various chlorophyll intermediates in higher plants, but DVR proteins from different species have diverse and differing substrate preferences, although they are homologous.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Clorofila/biossíntese , Cucumis/enzimologia , Oryza/enzimologia , Oxirredutases/metabolismo , Zea mays/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Cucumis/genética , Ativação Enzimática , Ensaios Enzimáticos , Genes de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Fases de Leitura Aberta , Oryza/genética , Protoclorifilida/metabolismo , Protoporfirinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato , Zea mays/genética
9.
Respir Physiol Neurobiol ; 322: 104219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242336

RESUMO

Acute Lung Injury (ALI) manifests as an acute exacerbation of pulmonary inflammation with high mortality. The potential application of Danshensu methyl ester (DME, synthesized in our lab) in ameliorating ALI has not been elucidated. Our results demonstrated that DME led to a remarkable reduction in lung injury. DME promoted a marked increase in antioxidant enzymes, like superoxide dismutase (SOD), and glutathione (GSH), accompanied by a substantial decrease in reactive oxygen species (ROS), myeloperoxidase (MPO), and malondialdehyde (MDA). Moreover, DME decreased the production of IL-1ß, TNF-α and IL-6, in vitro and in vivo. TLR4 and MyD88 expression is reduced in the DME-treated cells or tissues, which further leading to a decrease of p-p65 and p-IκBα. Meanwhile, DME effectively facilitated an elevation in cytoplasmic p65 expression. In summary, DME could ameliorate ALI by its antioxidant functionality and anti-inflammation effects through TLR4/NF-κB, which implied that DME may be a viable medicine for lung injury.


Assuntos
Lesão Pulmonar Aguda , Lactatos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Glutationa
10.
ACS Appl Mater Interfaces ; 16(3): 3187-3201, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206677

RESUMO

Cancer pain seriously reduces the quality of life of cancer patients. However, most research about cancer focuses solely on inhibiting tumor growth, neglecting the issue of cancer pain. Therefore, the development of therapeutic agents with both tumor suppression and cancer pain relief is crucial to achieve human-centered treatment. Here, the work reports curcumin (CUR) and ropivacaine (Ropi) coincorporating CaCO3/PDA nanoparticles (CaPNMCUR+Ropi) that realized efficient tumor immunotherapy and cancer pain suppression. The therapeutic efficiency and mechanism are revealed in vitro and in vivo. The results indicate that CaPNMCUR+Ropi underwent tumor microenvironment-responsive degradation and realized rapid release of calcium ions, Ropi, and CUR. The excessive intracellular calcium triggered the apoptosis of tumor cells, and the transient pain caused by the tumor injection was relieved by Ropi. Simultaneously, CUR reduced the levels of immunosuppressive factor (TGF-ß) and inflammatory factor (IL-6, IL-1ß, and TNF-α) in the tumor microenvironment, thereby continuously augmenting the immune response and alleviating inflammatory pain of cancer animals. Meanwhile, the decrease of TGF-ß leads to the reduction of transient receptor potential vanilloid 1 (TRPV1) expression, thereby alleviating hyperalgesia and achieving long-lasting analgesic effects. The design of the nanosystem provides a novel idea for human-centered tumor treatment in the future.


Assuntos
Dor do Câncer , Curcumina , Indóis , Neoplasias , Polímeros , Animais , Humanos , Fator de Crescimento Transformador beta , Carbonato de Cálcio , Dor do Câncer/tratamento farmacológico , Cálcio , Qualidade de Vida , Ropivacaina/uso terapêutico , Neoplasias/tratamento farmacológico , Curcumina/uso terapêutico , Imunoterapia , Microambiente Tumoral
11.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38456515

RESUMO

After the publication of the article, an interested reader drew to the authors' attention that, in the western blots shown in Fig. 5C and D, a pair of data panels were inadvertently duplicated comparing between panels (C) and (D); in addition, the cell migration data shown in Fig. 7F on p. 1852 were selected incorrectly. The authors have examined their original data, and realize that these errors arose inadvertently as a consequence of their mishandling of their data. The revised versions of Figs. 5 and 7, featuring the corrected data for the caspase-8 experiment in Fig. 5C and alternative data for the cell migration assay experiments in Fig. 7F, are shown on the next two pages. The revised data shown for these Figures do not affect the overall conclusions reported in the paper. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. Furthermore, the authors apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1843-1854, 2018; DOI: 10.3892/or.2018.6593].

12.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525008

RESUMO

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Assuntos
Proteína HMGB1 , Melanoma , Humanos , Camundongos , Animais , Interleucina-12 , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/metabolismo , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Linfócitos T CD4-Positivos , Trifosfato de Adenosina/metabolismo
13.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383737

RESUMO

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Assuntos
Adenina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Adenina/análogos & derivados , Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno CD47/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
Med Image Anal ; 97: 103253, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38968907

RESUMO

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.

15.
Curr Oncol ; 30(11): 9940-9952, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999142

RESUMO

Objective: The purpose of this study was to evaluate the efficacy and safety of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors for the treatment of metastatic urothelial carcinoma (mUC). Methods: A literature search was conducted of PubMed, EMBASE, and the Cochrane Library and was limited to the English literature. Randomized controlled trials (RCTs) published up to July 2022 were considered for inclusion. The outcomes were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and grade ≥ 3 treatment-related AEs (TRAE). Subgroup analysis was performed based on the PD-L1 expression status, and the differences between first- and second-line PD-1/PD-L1 inhibitors were estimated. Results: We included five RCTs comprising 3584 patients in the analysis. Compared with chemotherapy alone, the use of PD-1/PD-L1 inhibitors as monotherapy did not significantly prolong OS [hazard ratios (HR), 0.90; 95% CI, 0.81-1.00] or PFS (HR, 1.12; 95% CI, 0.95-1.32). However, the PD-1/PD-L1 inhibitor combined with chemotherapy significantly improved both OS (HR, 0.85; 95% CI, 0.74-0.96) and PFS (HR, 0.80; 95% CI, 0.71-0.90). Additionally, subgroup analysis showed that in mUC with PD-L1 expression ≥ 5%, treatment with the PD-1/PD-L1 inhibitor alone did not reduce the risk of death. Safety analysis showed that the PD-1/PD-L1 inhibitor alone did not significantly increase the incidence rates of grade ≥ 3 TRAEs. Conclusions: The results show that use of the PD-1/PD-L1 inhibitor alone as first-line treatment is similar to chemotherapy in terms of both survival and response rates. However, the PD-1/PD-L1 inhibitor plus chemotherapy has a significant benefit in terms of PFS or OS. Nonetheless, more RCTs are warranted to evaluate efficiency and safety in the combination regimen of chemotherapy and PD-1/PD-L1 inhibitors.


Assuntos
Carcinoma , Inibidores de Checkpoint Imunológico , Humanos , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Intervalo Livre de Progressão
16.
Plant Sci ; 330: 111642, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804389

RESUMO

As signal molecules, plant peptides play key roles in intercellular communication during growth and development, as well as stress responses. The 14-amino-acid (aa) INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) peptide was originally identified to play an essential role in the floral organ abscission of Arabidopsis. It is synthesized from its precursor, a small protein containing 77-aa residues with an N-terminal signal peptide sequence. Recently, the IDA/IDA-like (IDLs) genes are isolated in several angiosperms and are highly conserved in land plants. In addition, IDA/IDLs are not only involved in organ abscission but also function in multiple biological processes, including biotic and abiotic stress responses. Here, we summarize the post-translational modification and proteolytic processing, the evolutionary conservation, and the potential regulatory function of IDA/IDLs, and also present future perspectives to investigate the IDA/IDLs signaling pathway. We anticipate that this detailed knowledge will help to improve the understanding of the molecular mechanism of plant peptide signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Flores/genética , Transdução de Sinais , Arabidopsis/metabolismo , Plantas/genética , Plantas/metabolismo , Peptídeos/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Zhongguo Fei Ai Za Zhi ; 26(8): 591-604, 2023 Aug 20.
Artigo em Zh | MEDLINE | ID: mdl-37752539

RESUMO

BACKGROUND: Lung cancer is one of the most common malignant tumors in the world, and the current lung cancer screening and treatment strategies are constantly improving, but its 5-year survival rate is still very low, which seriously endangers human health. Therefore, it is critical to explore new biomarkers to provide personalized treatment and improve the prognosis. Cuproptosis is a newly discovered type of cell death, which is due to the accumulation of excess copper ions in the cell, eventually leading to cell death, which has been suggested by studies to be closely related to the occurrence and development of lung adenocarcinoma (LUAD). Based on The Cancer Genome Atlas (TCGA) database, this study explored the association between cuproptosis-related genes (CRGs) and LUAD prognosis, established a prognostic risk model, and analyzed the interaction between CRGs and LUAD immune cell infiltration. METHODS: The RNA-seq data of LUAD tissue and paracancerous or normal lung tissue were downloaded from the TCGA database; the RNA-seq data of normal lung tissue was downloaded from the Genotype-tissue Expression (GTEx) database, and the data of 462 lung adenocarcinoma cases were downloaded from the Gene Expression Omnibus repository (GEO) as verification. T the risk score model to assess prognosis was constructed by univariate Cox and Lasso-Cox regression analysis, and the predictive ability of the model was evaluated by receiver operating characteristic (ROC) curve and calibration curve. Immune-related and drug susceptibility analysis was further performed on high- and low-risk groups. RESULTS: A total of 1656 CRGs and 1356 differentially expressed CRGs were obtained, and 13 CRGs were screened out based on univariate Cox and Lasso-Cox regression analysis to construct a prognostic risk model, and the area under the curves (AUCs) of ROC curves 1-, 3- and 5- year were 0.749, 0.740 and 0.689, respectively. Further study of immune-related functions and immune checkpoint differential analysis between high- and low-risk groups was done. High-risk groups were more sensitive to drugs such as Savolitinib, Palbociclib, and Cytarabine and were more likely to benefit from immunotherapy. CONCLUSIONS: The risk model constructed based on 13 CRGs has good prognostic value, which can assist LUAD patients in individualized treatment, and provides an important theoretical basis for the treatment and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Apoptose , Neoplasias Pulmonares , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Detecção Precoce de Câncer , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico , Cobre
18.
Int J Nanomedicine ; 18: 4381-4402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551273

RESUMO

Introduction: As the special modality of cell death, immunogenic cell death (ICD) could activate immune response. Phototherapy in combination with chemotherapy (CT) is a particularly efficient tumor ICD inducing method that could overcome the defects of monotherapies. Methods: In this study, new dual stimuli-responsive micelles were designed and prepared for imaging-guided mitochondrion-targeted photothermal/photodynamic/CT combination therapy through inducing ICD. A dual-sensitive methoxy-polyethylene glycol-SS-poly(L-γ-glutamylglutamine)-SS-IR780 (mPEG-SS-PGG-SS-IR780) polymer was synthesized by grafting IR780 with biodegradable di-carboxyl PGG as the backbone, and mPEG-SS-PGG-SS-IR780/paclitaxel micelles (mPEG-SS-PGG-SS-IR780/PTXL MCs) were synthesized by encapsulating PTXL in the hydrophobic core. Results: In-vivo and -vitro results demonstrated that the three-mode combination micelles inhibited tumor growth and enhanced the therapeutic efficacy of immunotherapy. The dual stimuli-responsive mPEG-SS-PGG-SS-IR780/PTXL MCs were able to facilitate tumor cell endocytosis of nanoparticles. They were also capable of promoting micelles disintegration and accelerating PTXL release. The mPEG-SS-PGG-SS-IR780/PTXL MCs induced mitochondrial dysfunction by directly targeting the mitochondria, considering the thermo- and reactive oxygen species (ROS) sensitivity of the mitochondria. Furthermore, the mPEG-SS-PGG-SS-IR780/PTXL MCs could play the diagnostic and therapeutic roles via imaging capabilities. Conclusion: In summary, this study formulated a high-efficiency nanoscale platform with great potential in combined therapy for tumors through ICD.


Assuntos
Micelas , Nanopartículas , Morte Celular Imunogênica , Indóis/química , Fototerapia/métodos , Nanopartículas/química , Mitocôndrias , Linhagem Celular Tumoral
19.
Thorac Cancer ; 14(6): 612-623, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597175

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play crucial roles in the development of various cancers. Here, we aimed to evaluate the roles of miR-138-5p in lung cancer progression and the value of miR-138-5p in lung cancer diagnosis. METHODS: Quantitative real-time PCR was performed to examine the expressions of miR-138-5p and smad nuclear interacting protein 1 (SNIP1) mRNA. The diagnostic value of miR-138-5p was analyzed using receiver operating characteristic (ROC) curve analysis, sensitivity, and specificity. We explored the effect of miR-138-5p on cell proliferation and metastasis by CCK-8, colony formation, wound healing and transwell assays. Western blot was employed to detect the protein expression of SNIP1 and related genes. Lung cancer cell growth was evaluated in vivo using xenograft tumor assay. RESULTS: MiR-138-5p was decreased in the serum of patients with non-small cell lung cancer (NSCLC) and in NSCLC cells and tissues. The area under the ROC curve of serum miR-138-5p in the diagnosis of NSCLC was 0.922. This finding indicates the high diagnostic efficiency for lung cancer. MiR-138-5p suppressed but its inhibitor promoted cell proliferation and migration compared with control treatment in vitro and in vivo. MiR-138-5p directly binds to the 3'-untranslated region of SNIP1 and negatively regulated the expression of SNIP1, thereby inhibiting the expression of cyclin D1 and c-Myc. Moreover, overexpression of SNIP1 rescues the miR-138-5p-mediated inhibition in NSCLC cells. CONCLUSIONS: The results suggested that miR-138-5p suppressed lung cancer cell proliferation and migration by targeting SNIP1. Serum miR-138-5p is a novel and valuable biomarker for NSCLC diagnosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
20.
Int J Pharm ; 631: 122488, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36521638

RESUMO

Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/química , Compostos de Manganês/química , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Óxidos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Resistência a Múltiplos Medicamentos , Oxigênio , Imageamento por Ressonância Magnética , Microambiente Tumoral , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA