Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Pharm ; 16(8): 3502-3513, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31251642

RESUMO

This study aimed to prepare and optimize goserelin acetate (GOS) loaded hydrogel poly(d,l-lactic acid-co-glycolic acid) (PLGA) microsphere that is suitable for long-acting clinical treatment, investigate its structure, and regulate the initial release manner. Here, the PLGA microsphere containing Poloxamer hydrogel loaded with ∼15% (w/w) GOS was prepared by double-emulsion-solvent evaporation method and evaluated in terms of microscopic structure, physicochemical properties, and release manner in vitro and in vivo. Raman volume imaging and scanning electron microscopy studies revealed a core-shell Di-Depot structure of the microsphere, in which multi-GOS-loaded hydrogel depots were distributed in the core region. Under the interaction of hydrogel and PLGA depots, high encapsulation efficiency (94.16%) and low burst release (less than 2%) were achieved, along with the accompanying prolonged administration interval (49 days); an enhanced relative bioavailability 9.36-fold higher than that of Zoladex implant was also observed. Also, by addition of 1-5% acetic acid, the lag time was shortened to 6 days. The strategy for regulating the initial release provides new insights for manipulating the release behavior of the PLGA microspheres. The desirable property of the Poloxamer hydrogel PLGA microsphere indicated its promising application in controlled release drug delivery system.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Gosserrelina/administração & dosagem , Ácido Acético/química , Animais , Antineoplásicos Hormonais , Disponibilidade Biológica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/farmacocinética , Liberação Controlada de Fármacos , Gosserrelina/farmacocinética , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Injeções Intramusculares , Injeções Subcutâneas , Masculino , Microesferas , Tamanho da Partícula , Poloxâmero/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neoplasias da Próstata/tratamento farmacológico , Ratos
2.
Mol Pharm ; 15(7): 2870-2882, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29863879

RESUMO

In this work, a nano-in-micro carrier was constructed by loading polymer-lipid hybrid nanoparticles (NPs) into porous and hollow yeast cell wall microparticles (YPs) for macrophage-targeted oral delivery of cabazitaxel (CTX). The YPs, primarily composed of natural ß-1,3-d-glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. By combining electrostatic force-driven self-deposition with solvent hydration/lyophilization methods, the positively charged NPs loaded with CTX or fluorescence probes were efficiently packaged into YPs, as verified by scanning electron microscope (SEM), atomic force mircoscope (AFM), and confocal laser scanning microscopy (CLSM) images. NP-loaded YPs (NYPs) showed a slower in vitro drug release and higher drug stability compared with NPs in a simulated gastrointestinal environment. Biodistribution experiments confirmed a widespread distribution and extended retention time of NYPs in the intestinal tract after oral administration. Importantly, a large amount of NYPs were primarily accumulated and transported in the intestinal Peyer's patches as visualized in distribution and absorption site studies, implying that NYPs were mainly absorbed through the lymphatic pathway. In vitro cell evaluation further demonstrated that NYPs were rapidly and efficiently taken up by macrophages via receptor dectin-1-mediated endocytosis using a mouse macrophage RAW 264.7 cell line. As expected, in the study of in vivo pharmacokinetics, the oral bioavailability of CTX was improved to 32.1% when loaded in NYPs, which is approximately 5.7 times higher than that of the CTX solution, indicating the NYPs are efficient for oral targeted delivery. Hence, this nano-in-micro carrier is believed to become a hopeful alternative strategy for increasing the oral absorption of small molecule drugs.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Macrófagos/efeitos dos fármacos , Taxoides/administração & dosagem , Administração Oral , Animais , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Parede Celular/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Absorção Intestinal , Macrófagos/imunologia , Masculino , Camundongos , Modelos Animais , Nanopartículas/química , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Proteoglicanas , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Saccharomyces cerevisiae/química , Taxoides/farmacocinética , Distribuição Tecidual , beta-Glucanas/química
3.
Biomater Adv ; 164: 213990, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39154560

RESUMO

Microbial keratitis associated with contact lenses (CLs) wear remains a significant clinical concern. Antibiotic therapy is the current standard of care. However, the emergence of multidrug-resistant pathogens necessitates the investigation of alternative strategies. Antibiotic-free antimicrobial contact lenses (AFAMCLs) represent a promising approach in this regard. The effectiveness of CLs constructed with a variety of antibiotic-free antimicrobial strategies against microorganisms has been demonstrated. However, the impact of these antimicrobial strategies on CLs biocompatibility remains unclear. In the design and development of AFAMCLs, striking a balance between robust antimicrobial performance and optimal biocompatibility, including safety and wearing comfort, is a key issue. This review provides a comprehensive overview of recent advancements in AFAMCLs technology. The focus is on the antimicrobial efficacy and safety of various strategies employed in AFAMCLs construction. Furthermore, this review investigates the potential impact of these strategies on CLs parameters related to wearer comfort. This review aims to contribute to the continuous improvement of AFAMCLs and provide a reference for the trade-off between resistance to microorganisms and wearing comfort. In addition, it is hoped that this review can also provide a reference for the antimicrobial design of other medical devices.


Assuntos
Anti-Infecciosos , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Lentes de Contato/microbiologia , Lentes de Contato/efeitos adversos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
J Agric Food Chem ; 72(19): 10853-10861, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38708871

RESUMO

The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 µg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.


Assuntos
Antibacterianos , Cumarínicos , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Cumarínicos/farmacologia , Cumarínicos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Int J Biol Macromol ; 245: 125489, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348583

RESUMO

Supersaturating drug delivery system (SDDS) is a promising approach to enhance the solubility of hydrophobic functional components. However, SDDS is thermodynamically unstable and crystallization tends to occur. In this work, curcumin was used as a model compound, and the crystallization inhibitory effect of konjac glucomannan (KGM), sodium alginate (SA) and xanthan gum (XTG) on curcumin in supersaturated solution was investigated. Amorphous solubility of curcumin was determined using ultraviolet extinction, fluorescence spectroscopy and dynamic light scattering methods. Nucleation induction time (NIT) and crystal growth rate of curcumin were evaluated using ultraviolet probe in the absence and presence of various natural polysaccharides (NPs). Results showed that amorphous solubility of curcumin was approximately 30 µg/mL in pH 6.8 phosphate buffer. NPs used in this work restrained nucleation or crystal growth of curcumin effectively. The NITs of curcumin in the absence of NPs and in the presence of XTG, KGM and SA (1 µg/mL) were 3.7, 60.7, 20.0 and 8.0 min, respectively. The crystal growth rate of curcumin in the absence of NPs and in the presence of XTG, SA and KGM (1 µg/mL) were 0.0103, 0.00752, 0.00286 and 0.000306 min-1, respectively. The nucleation inhibitory effect of NPs on curcumin was ranked as XTG > KGM > SA. The order of crystal growth inhibition capacity of NPs was KGM > SA > XTG. In conclusion, NPs could be incorporated into SDDS to maintain supersaturation of hydrophobic components for enhanced bioavailability.


Assuntos
Curcumina , Cristalização , Curcumina/farmacologia , Alginatos , Mananas/química , Solubilidade
6.
Colloids Surf B Biointerfaces ; 231: 113558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776774

RESUMO

To develop a long-term drug delivery system for the treatment of primary and metastatic peritoneal carcinoma (PC) by intraperitoneal (IP) injection, a disulfiram (DSF)/copper gluconate (Cu-Glu)-co-loaded bi-layered poly (lactic acid-coglycolic acid) (PLGA) microspheres (Ms) - thermosensitive hydrogel system (DSF-Ms-Cu-Glu-Gel) was established. Rate and mechanisms of drug release from DSF-Ms-Cu-Glu-Gel were explored. The anti-tumor effects of DSF-Ms-Cu-Glu-Gel by IP injection were evaluated using H22 xenograft tumor model mice. The accumulative release of DSF from Ms on the 10th day was 83.79% without burst release. When Ms were dispersed into B-Gel, burst release at 24 h decreased to 14.63%. The results showed that bis (diethyldithiocarbamate)-copper (Cu(DDC)2) was formed in DSF-Ms-Cu-Glu-Gel and slowly released from B-Gel. In a pharmacodynamic study, the mount of tumor nodes and ascitic fluid decreased in the DSF-Ms-Cu-Glu-Gel group. This was because: (1) DSF-Ms-Cu-Glu-Gel system co-loaded DSF and Cu-Glu, and physically isolated DSF and Cu-Glu before injection to protect DSF; (2) space and water were provided for the formation of Cu(DDC)2; (3) could provide an effective drug concentration in the abdominal cavity for a long time; (4) both DSF and Cu(DDC)2 were effective anti-tumor drugs, and the formation of Cu(DDC)2 occurred in the abdominal cavity, which further enhanced the anti-tumor activity. Thus, the DSF-Ms-Cu-Glu-Gel system can be potentially used for the IP treatment of PC in the future.


Assuntos
Dissulfiram , Neoplasias Peritoneais , Humanos , Animais , Camundongos , Dissulfiram/farmacologia , Neoplasias Peritoneais/tratamento farmacológico , Cobre/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos
7.
Drug Dev Ind Pharm ; 38(11): 1344-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22283480

RESUMO

OBJECTIVE: The objective of this study is to investigate the wet-milled-drug layering process which could significantly improve the dissolution rate and oral bioavailability of fenofibrate pellets. METHODS: Fenofibrate was milled with HPMC-E5 to prepare a uniform suspension in the micrometer and nanometer range, and this suspension was then layered on to sugar spheres to form the pellets (F1, F2). RESULTS: The particle size was significantly reduced (from 1000 µm to 1-10 µm and 400 nm) but the fenofibrate in suspension retained its crystallinity from the results of DSC and PXRD investigations. The dissolution rate of F1-F2 and Antara® capsules was 55.47 %, 61.27 % and 58.43 %, respectively, in 0.01 mol/L SDS solution over 60 min. In addition, F1, F2, and Antara® capsules were given orally to 6 beagle dogs to determine the bioavailability. The C(max) of F1, F2 (8.21 ± 2.55 and 9.33 ± 2.37 µg/mL)and the AUC((0-t)) of F1, F2 (152.46 ± 78.89 and 172.17 ± 67.58 µg/mL·h)were higher than those of Antara® (6.02 ± 3.34 µg/mL and 89.82 ± 46.46 µg/mL·h) and, F1, F2 reached their C(max) earlier than Antara® (F1: 2.0 ± 1.1 h; F2: 1.8 ± 1.2 h; Antara®: 6.0 ± 8.9 h). CONCLUSION: These results show that the wet-milled-drug layering technique is a powerful method to improve the dissolution rate and the bioavailability of fenofibrate.


Assuntos
Composição de Medicamentos/métodos , Fenofibrato/química , Fenofibrato/farmacocinética , Hipolipemiantes/química , Hipolipemiantes/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Cães , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Fenofibrato/administração & dosagem , Fenofibrato/sangue , Hipolipemiantes/administração & dosagem , Hipolipemiantes/sangue , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Termografia , Difração de Raios X
8.
Pharmaceutics ; 14(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015367

RESUMO

Hydrochlorothiazide (HCTZ)/losartan potassium (LOS-K) was used as a model drug to prepare compound tablets through the investigation of the compression and mechanical properties of mixed powders to determine the formulation and preparation factors, followed by D-optimal mixture experimental design to optimize the final parameters. The type and amount of lactose monohydrate (SuperTab®14SD, 19.53−26.91%), microcrystalline cellulose (MCC PH102, 32.86−43.31%), pre-gelatinized starch (Starch-1500, 10.96−15.91%), and magnesium stearate (0.7%) were determined according to the compressive work, stress relaxation curves, and Py value. Then, the compression mechanism of the mixed powder was investigated by the Kawakita equation, Shapiro equation, and Heckel analysis, and the mixed powder was classified as a Class-II powder. The compaction pressure (150−300 MPa) and tableting speed (1200−2400 Tab/h) were recommended. A D-optimal mixture experimental design was utilized to select the optimal formulation (No 1, 26.027% lactose monohydrate, 32.811% MCC PH102, and 15.462% pregelatinized starch) according to the drug dissolution rate, using Hyzaar® tablets as a control. Following oral administration in beagle dogs, there were no significant differences in bioavailability between the No. 1 tablet and the Hyzaar® tablet in HCTZ, losartan carboxylic acid (E-3174), and LOS-K (F < F0.05). Thus, formulation and preparation factors were determined according to the combination of the compression and mechanical properties of the mixed powder and quality of tablets, which was demonstrated to be a feasible method in direct powder compression.

9.
Int J Pharm ; 615: 121474, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35041918

RESUMO

To prepare Goserelin (GOS) loaded long-acting microspheres with reduced initial release and prolonged drug release time of GOS, GOS/PLGA solid dispersion (by hot-melt extrusion, HME) was dissolved/dispersed in dichloromethane (DCM) to prepare microspheres by O/W method. From results of molecular dynamics simulation, PLGA and GOS molecules completely and uniformly dissolved and dispersed in DCM, respectively. In F5 microspheres (prepared by HME-O/W method), GOS existed as molecular or amorphous state, but not aggregation. Burst release of F5 microspheres (2.75%) was similar with Zoladex™ implant (0.39%) and less than F10 microspheres (prepared by S/O/W method, 25.92%). After lag phase, GOS released rapidly from F5 microspheres and the cumulative release on the 45th days was 95.14%. After injection of F5 microspheres, GOS serum concentration was relative steady at the range of 27.64-175.27 ng/mL for nearly 35 days. AUC(0-35 day) of F5 microspheres was almost 2 times that of F10 microspheres. Pharmacodynamics study also showed potential effect of F5 microspheres on inhibiting the secretion of testosterone in male rats. HME-O/W method is potential to establish long-acting PLGA microspheres (loading water-soluble drug), exhibiting stable drug serum concentration in vivo, and without large concentration fluctuation or serious pain/side effects.


Assuntos
Portadores de Fármacos/química , Gosserrelina/farmacocinética , Ácido Poliglicólico , Animais , Ácido Láctico , Masculino , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos
10.
Front Pharmacol ; 12: 723731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795579

RESUMO

Augmented renal clearance (ARC) is a phenomenon of increased renal function in patients with risk factors. Sub-therapeutic drug concentrations and antibacterial exposure in ARC patients are the main reasons for clinical treatment failure. Decades of increased research have focused on these phenomena, but there are still some existing disputes and unresolved issues. This article reviews information on some important aspects of what we have known and provides suggestion on what we will do regarding ARC. In this article, we review the current research progress and its limitations, including clinical identification, special patients, risk factors, metabolism, animal models and clinical treatments, and provide some promising directions for further research in this area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA