Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nature ; 611(7936): 540-547, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352232

RESUMO

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord1-3 applied during neurorehabilitation4,5 (EESREHAB) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EESREHAB in mice. We applied single-nucleus RNA sequencing6-9 and spatial transcriptomics10,11 to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type12,13 and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EESREHAB, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.


Assuntos
Neurônios , Paralisia , Traumatismos da Medula Espinal , Medula Espinal , Caminhada , Animais , Humanos , Camundongos , Neurônios/fisiologia , Paralisia/genética , Paralisia/fisiopatologia , Paralisia/terapia , Medula Espinal/citologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Caminhada/fisiologia , Estimulação Elétrica , Região Lombossacral/inervação , Reabilitação Neurológica , Análise de Sequência de RNA , Perfilação da Expressão Gênica
2.
Mol Cell ; 74(1): 118-131.e7, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30819645

RESUMO

Alternative polyadenylation (APA) produces mRNA isoforms with different 3' UTR lengths. Previous studies indicated that 3' end processing and mRNA export are intertwined in gene regulation. Here, we show that mRNA export factors generally facilitate usage of distal cleavage and polyadenylation sites (PASs), leading to long 3' UTR isoform expression. By focusing on the export receptor NXF1, which exhibits the most potent effect on APA in this study, we reveal several gene features that impact NXF1-dependent APA, including 3' UTR size, gene size, and AT content. Surprisingly, NXF1 downregulation results in RNA polymerase II (Pol II) accumulation at the 3' end of genes, correlating with its role in APA regulation. Moreover, NXF1 cooperates with CFI-68 to facilitate nuclear export of long 3' UTR isoform with UGUA motifs. Together, our work reveals important roles of NXF1 in coordinating transcriptional dynamics, 3' end processing, and nuclear export of long 3' UTR transcripts, implicating NXF1 as a nexus of gene regulation.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Poliadenilação , RNA Mensageiro/biossíntese , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Núcleo Celular/genética , Células HEK293 , Células HeLa , Humanos , Cinética , Proteínas de Transporte Nucleocitoplasmático/genética , Ligação Proteica , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
3.
Blood ; 139(3): 424-438, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34482400

RESUMO

Posttranscriptional regulation has emerged as a driver for leukemia development and an avenue for therapeutic targeting. Among posttranscriptional processes, alternative polyadenylation (APA) is globally dysregulated across cancer types. However, limited studies have focused on the prevalence and role of APA in myeloid leukemia. Furthermore, it is poorly understood how altered poly(A) site usage of individual genes contributes to malignancy or whether targeting global APA patterns might alter oncogenic potential. In this study, we examined global APA dysregulation in patients with acute myeloid leukemia (AML) by performing 3' region extraction and deep sequencing (3'READS) on a subset of AML patient samples along with healthy hematopoietic stem and progenitor cells (HSPCs) and by analyzing publicly available data from a broad AML patient cohort. We show that patient cells exhibit global 3' untranslated region (UTR) shortening and coding sequence lengthening due to differences in poly(A) site (PAS) usage. Among APA regulators, expression of FIP1L1, one of the core cleavage and polyadenylation factors, correlated with the degree of APA dysregulation in our 3'READS data set. Targeting global APA by FIP1L1 knockdown reversed the global trends seen in patients. Importantly, FIP1L1 knockdown induced differentiation of t(8;21) cells by promoting 3'UTR lengthening and downregulation of the fusion oncoprotein AML1-ETO. In non-t(8;21) cells, FIP1L1 knockdown also promoted differentiation by attenuating mechanistic target of rapamycin complex 1 (mTORC1) signaling and reducing MYC protein levels. Our study provides mechanistic insights into the role of APA in AML pathogenesis and indicates that targeting global APA patterns can overcome the differentiation block in patients with AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Poliadenilação , Regiões 3' não Traduzidas , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Tumorais Cultivadas , Fatores de Poliadenilação e Clivagem de mRNA/genética
4.
Clin Sci (Lond) ; 138(1): 23-42, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38060817

RESUMO

Reductions in Na+-K+-ATPase (NKA) activity and expression are often observed in the progress of various reason-induced heart failure (HF). However, NKA α1 mutation or knockdown cannot cause spontaneous heart disease. Whether the abnormal NKA α1 directly contributes to HF pathogenesis remains unknown. Here, we challenge NKA α1+/- mice with isoproterenol to evaluate the role of NKA α1 haploinsufficiency in isoproterenol (ISO)-induced cardiac dysfunction. Genetic knockdown of NKA α1 accelerated ISO-induced cardiac cell hypertrophy, heart fibrosis, and dysfunction. Further studies revealed decreased Krebs cycle, fatty acid oxidation, and mitochondrial OXPHOS in the hearts of NKA α1+/- mice challenged with ISO. In ISO-treated conditions, inhibition of NKA elevated cytosolic Na+, further reduced mitochondrial Ca2+ via mNCE, and then finally down-regulated cardiac cell energy metabolism. In addition, a supplement of DRm217 alleviated ISO-induced heart dysfunction, mitigated cardiac remodeling, and improved cytosolic Na+ and Ca2+ elevation and mitochondrial Ca2+ depression in the NKA α1+/- mouse model. The findings suggest that targeting NKA and mitochondria Ca2+ could be a promising strategy in the treatment of heart disease.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Adenosina Trifosfatases/metabolismo
5.
Langmuir ; 40(23): 11903-11913, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38813993

RESUMO

In this study, the dual strategy of 1-butyl-3-vinylimidazolium bromide ionic liquid (IL) grafting and carbon nanotubes (CNTs) nanocomposition was applied to modify poly(vinylidene fluoride) (PVDF)-based membranes. The highly hydrophilic/oleophobic and fouling-resistant PVDF-g-IL/CNTs membranes with excellent separation efficiency were obtained by the nonsolvent-induced phase separation method with ethanol-water mixed solution as the coagulation bath. The grafted IL not only generated hydrophilic groups on PVDF chains but also acted together with the CNTs to induce the formation of hydrophilic ß-crystalline phase of PVDF, which significantly improved the hydrophilicity and pore structure of the modified PVDF membranes. As a result, the pure water flux of the optimal membrane increased up to 294.2 L m-2 h-1, which was 5.2 times greater than that of the pure PVDF membrane. Simultaneously, the electrostatic interaction of the positive IL and the integration of CNTs enhanced adsorption sites of the membranes, producing exceptional retention and adsorption of dye wastewater and oil-water emulsion. This study presents a straightforward and efficient approach for fabricating PVDF separation membranes, which have potential applications in the purification of various polluted wastewater.

6.
Philos Trans A Math Phys Eng Sci ; 382(2276): 20230181, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38945163

RESUMO

Intraplate earthquakes induced by anthropogenic fluid injection present unexpected seismic risk to previously quiescent or low seismicity-rate regions. Despite many studies of induced seismicity, there are relatively few with detailed openly accessible constraints on the interaction between seismic sources and subsurface structures. In this study of the Raton Basin, we refine source observations from a dense nodal array and constrain basin structure using teleseismic receiver functions. The cross-correlation-based relocated hypocentres and a new set of focal mechanisms light up active fault segments and show clear spatiotemporal patterns. The geometric complexity of reactivated fault clusters appears greatest near higher rate injection wells. Simpler normal fault structure is found farther from injection wells and near abrupt structural transitions suggested by receiver functions. While less induced seismicity in the crystalline basement is expected when injection is >1 km from the top of the basement (like Raton), our receiver function analysis identified a basin thickness ~3 km beneath the nodal array and lateral variations in sedimentary structures. Our results explain potential fluid connectivity between the injection depths focused at ~1-1.5 km below the surface and basement fault activity that begins at ~3 km and reaches peak activity at ~4-8 km depths. This article is part of the theme issue 'Induced seismicity in coupled subsurface systems'.

7.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620709

RESUMO

Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Instabilidade Genômica/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Histonas/metabolismo , RNA Interferente Pequeno/genética
8.
Small ; 19(47): e2304204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37496099

RESUMO

Utilization of life-like hydrogels to replicate synergistic shape/color changeable behaviors of living organisms has been long envisaged to produce robust functional integrated soft actuators/robots. However, it remains challenging to construct such hydrogel systems with integrated functionality of remote, localized and environment-interactive control over synergistic discoloration/actuation. Herein, inspired by the evolution-optimized bioelectricity stimulus and multilayer structure of natural reptile skins, electronically innervated fluorescence-color switchable hydrogel actuating systems with bio-inspired multilayer structure comprising of responsive fluorescent hydrogel sheet and conductive Graphene/PDMS film with electrothermal effect is presented. Such rational structure enables remote control over synergistic fluorescence-color and shape changes of the systems via the cascading "electrical trigger-Joule heat generation-hydrogel shrinkage" mechanism. Consequently, local/sequential control of discoloration/actuation are achieved due to the highly controllable electrical stimulus in terms of amplitude and circuit design. Furthermore, by joint use with acoustic sensors, soft chameleon robots with unprecedented environment-interactive adaptation are demonstrated, which can intelligently sense environment signals to adjust their color/shape-changeable behaviors. This work opens previously unidentified avenues for functional integrated soft actuators/robots and will inspire life-like intelligent systems for versatile uses.


Assuntos
Acústica , Hidrogéis , Fluorescência , Corantes , Condutividade Elétrica
9.
Langmuir ; 39(24): 8390-8403, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37289441

RESUMO

In the present work, self-cleaning membranes of ionic liquid-grafted poly(vinylidene fluoride) (PVDF) polydopamine-coated TiO2 were prepared through a nonsolvent-induced phase separation method. PDA facilitates the uniform dispersion of TiO2 nanoparticles in PVDF substrates; meanwhile, TiO2@PDA core-shell particles and the hydrophilic IL improve the hydrophilicity of PVDF membranes and contribute to the increased average pore size and porosity, significantly improving the pure water permeation flux and dye wastewater flux (the water flux increased to 385.9 Lm-2 h-1). In addition, the combined effect of the positively charged IL and the strongly viscous PDA shell layer enhanced the retention and adsorption of dyes so that the retention and adsorption rates of both anionic and cationic dyes were close to 100%. Notably, the hydrophilic PDA allowed more TiO2 to migrate to the membrane surface during the phase transition; on the other hand, dopamine could promote photodegradation. Therefore, the combined two factors for TiO2@PDA were beneficial to the ultraviolet-catalytic (UV-catalytic) degradation of dyes on the surface of the membrane, leading to >80% degradation rates of various dyes. Thus, the high-efficiency and easy-to-operate wastewater treatment technology provides attractive potential for dye removal and resolution of membrane contamination.

10.
Physiol Plant ; 175(2): e13885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36852715

RESUMO

Hydrogen sulfide (H2 S) is an important gaseous signal molecule that regulates plant growth and stress resistance. However, research on the H2 S synthase (HSase) genes is still limited in the model legume plant Medicago truncatula Gaertn. In the present study, a total of 40 HSase family members were first identified and analyzed in the M. truncatula genome, and these genes distributed across eight chromosomes and were clustered into five groups (I-V) based on their conserved gene structures and protein motifs. Expression analysis revealed that the MtHSase genes were expressed in all the tested abiotic stresses, albeit with expression level differences. This study also showed that H2 S improves low temperature tolerance of alfalfa seedlings by regulating the antioxidant defense system and enhancing photosynthetic capacity. Thus, the study provides new insights into how the H2 S signal regulates tolerance to low-temperature stress and provides the basis for further gene function and detection.


Assuntos
Sulfeto de Hidrogênio , Medicago truncatula , Medicago sativa/genética , Sulfeto de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo , Temperatura , Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Filogenia
11.
BMC Psychiatry ; 23(1): 953, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114961

RESUMO

BACKGROUND: Studies have reported an increase in the prevalence of depression during the COVID-19 pandemic. The accuracy of screening tools may change with the prevalence and distribution of a disease in a population or sample: the "Spectrum Effect". METHODS: First, we selected commonly used screening tools and developed search strategies for the inclusion of original studies during the pandemic. Second, we searched PsycINFO, EMBASE, and MEDLINE from March 2020 to September 2022 to obtain original studies that investigated the accuracy of depression screening tools during the pandemic. We then searched these databases to identify meta-analyses summarizing the accuracy of these tools conducted before the pandemic and compared the optimal cut-offs for depression screening tools during the pandemic with those before. RESULT: Four original studies evaluating the optimal cut-offs for four screening tools (Beck Depression Inventory [BDI-II], Hospital Anxiety and Depression Scale-Depression [HADS-D], Patient Health Questionnaire-9 [PHQ-9], and Geriatric Depression Scale-4 [GDS-4]) were published during the pandemic. Four meta-analyses summarizing these tools before the pandemic. We found that the optimal cut-off of BDI-II was 14 during the pandemic (23.8% depression prevalence, screening patients with Type 2 diabetes) and 14.5 before the pandemic (17.6% depression prevalence, screening psychiatric, primary care, and healthy populations); HADS-D was 10 during the pandemic (23.8% depression prevalence, screening patients with type 2 diabetes) and 7 before the pandemic (15.0% depression prevalence, screening medically ill patients); PHQ-9 was 11 during the pandemic (14.5% depression prevalence, screening university students) and 8 before the pandemic (10.9% depression prevalence, screening the unrestricted population), and GDS-4 was 1.8 during the pandemic (29.0% depression prevalence, screening adults seen in a memory clinic setting) and 3 before the pandemic (18.5% depression prevalence, screening older adults). CONCLUSION: The optimal cut-off for different screening tools may be sensitive to changes in study populations and reference standards. And potential spectrum effects that should be considered in post-COVID time which aiming to improve diagnostic accuracy.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Idoso , Depressão/diagnóstico , Depressão/epidemiologia , Depressão/psicologia , Pandemias , COVID-19/epidemiologia , Escalas de Graduação Psiquiátrica , Programas de Rastreamento
12.
Proc Natl Acad Sci U S A ; 117(48): 30400-30411, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199649

RESUMO

Fragile X syndrome (FXS) is caused by inactivation of the FMR1 gene and loss of encoded FMRP, an RNA binding protein that represses translation of some of its target transcripts. Here we use ribosome profiling and RNA sequencing to investigate the dysregulation of translation in the mouse brain cortex. We find that most changes in ribosome occupancy on hundreds of mRNAs are largely driven by dysregulation in transcript abundance. Many down-regulated mRNAs, which are mostly responsible for neuronal and synaptic functions, are highly enriched for FMRP binding targets. RNA metabolic labeling demonstrates that, in FMRP-deficient cortical neurons, mRNA down-regulation is caused by elevated degradation and is correlated with codon optimality. Moreover, FMRP preferentially binds mRNAs with optimal codons, suggesting that it stabilizes such transcripts through direct interactions via the translational machinery. Finally, we show that the paradigm of genetic rescue of FXS-like phenotypes in FMRP-deficient mice by deletion of the Cpeb1 gene is mediated by restoration of steady-state RNA levels and consequent rebalancing of translational homeostasis. Our data establish an essential role of FMRP in codon optimality-dependent mRNA stability as an important factor in FXS.


Assuntos
Códon , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Animais , Córtex Cerebral/metabolismo , Síndrome do Cromossomo X Frágil/etiologia , Síndrome do Cromossomo X Frágil/metabolismo , Perfilação da Expressão Gênica , Homeostase , Camundongos , Modelos Biológicos , Biossíntese de Proteínas , Estabilidade de RNA , Ribossomos/metabolismo
13.
Angew Chem Int Ed Engl ; 62(23): e202300417, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929609

RESUMO

Many living organisms have the superb structure-editing capacity for better adaptation in dynamic environments over the course of their life cycle. However, it's still challenging to replicate such natural structure-editing capacity into artificial hydrogel actuating systems for enhancing environment-interactive functions. Herein, we learn from the metamorphosis development of glowing octopus to construct proof-of-concept fluorescent hydrogel actuators with life-like structure-editing capacity by developing a universal stepwise inside-out growth strategy. These actuators could perform origami-like 3D shape deformation and also enable the postnatal growth of new structures to adapt additional actuating states for different visual information delivery by using different environment keys (e.g., temperature, pH). This study opens previously unidentified-avenues of bio-inspired hydrogel actuators/robotics and extends the potential uses for environment-interactive information encryption.


Assuntos
Corantes , Hidrogéis , Hidrogéis/química , Temperatura
14.
J Plant Res ; 135(6): 723-737, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36260182

RESUMO

We sequenced and analyzed the complete chloroplast genomes of Lilium amoenum, Lilium souliei, and Nomocharis forrestii in detail, including the first sequence and structural comparison of Nomocharis forrestii. We found that the lengths and nucleotide composition of the three chloroplast genes showed little variation. The chloroplast genomes of the three Lilium species contain 87 protein coding genes (PCGs), 38 tRNAs, and 8 rRNA genes. The only difference is that Nomocharis forrestii had an additional infA pseudogene. In the sequence analysis of the Lilium chloroplast genomes, 216 SSRs, 143 pairs of long repeats, 571 SNPs, and 202 indels were detected. In addition, we identified seven hypervariable regions that can be used as potential molecular markers and DNA barcodes of Lilium through complete sequence alignment. The phylogenetic tree was constructed from the three chloroplast genome sequences of Lilium obtained here and 40 chloroplast genome sequences from the NCBI database (including 35 Lilium species, 4 Fritillaria species, and one species of Smilax). The analysis showed that the species clustering of the genus Lilium essentially conformed to the classical morphological classification system of Comber, but differences in the classification of individual species remained. In our report, we support the reclassification of Lilium henryi and Lilium rosthorniiy in the genus Lilium. In general, this study not only provides genome data for three Lilium species, but also provides a comparative analysis of the Lilium chloroplast genomes. These advances will help to identify Lilium species, clarify the phylogenetic analysis of the Lilium genus, and help to solve and improve the disputes and deficiencies in the traditional morphological classification.


Assuntos
Genoma de Cloroplastos , Lilium , Genoma de Cloroplastos/genética , Filogenia , Lilium/genética , Genômica , Alinhamento de Sequência
15.
Biomed Chromatogr ; 36(9): e5428, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35708903

RESUMO

Unconjugated bile acids (BAs) have gained more attention than conjugated BAs in the association studies among diet, gut microbiota, and diseases. GC-MS is probably a good choice for specialized analysis of unconjugated BAs due to its high separation capacity and identification convenience. However, few reports have focused on the rodent unconjugated BAs using GC-MS, and the main library for identification has not included rodent-specific BAs. We developed a GC-MS method for targeted profiling of eight main unconjugated BAs in rodent models, which showed excellent performance on sensitivity, reproducibility, and accuracy. Quantitative reproducibility in terms of relative standard deviation (RSD) was in the range of 2.05-2.91%, with detection limits of 3-55 ng/mL, quantitation limits of 9-182 ng/mL, and the recovery rate of 72-115%. All the calibration curves displayed good linearity with correlation coefficient values (R2 ) more than 0.99. Using the established method, the influence of high-fat diet on the metabolism of unconjugated BAs was revealed. Significant increase in fecal unconjugated BAs induced by high-fat diet would be a potential risk to gut inflammation and cancer. The study provides a convenient and targeted GC-MS method for specialized profiling of rodent unconjugated BAs in physiological and pathological studies.


Assuntos
Ácidos e Sais Biliares , Dieta Hiperlipídica , Animais , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Roedores
16.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077362

RESUMO

Paclobutrazol (PBZ) is a plant-growth regulator (PGR) in the triazole family that enhances plant tolerance to environmental stresses. Low-light (LL) intensity is a critical factor adversely affecting the growth of tall fescue (Festuca arundinacea Schreb.). Therefore, in this study, tall fescue seedlings were treated with PBZ under control and LL conditions to investigate the effects of PBZ on enhancing LL stress resistance by regulating the growth, photosynthesis, oxidative defense, and hormone levels. Our results reveal that LL stress reduced the total biomass, chlorophyll (Chl) content, photosynthetic capacity, and photochemical efficiency of photosystem II (PSII) but increased the membrane lipid peroxidation level and reactive oxygen species (ROS) generation. However, the application of PBZ increased the photosynthetic pigment contents, net photosynthetic rate (Pn), maximum quantum yield of PSII photochemistry (Fv/Fm), ribulose-1,5-bisphosphate carboxylase (RuBisCO) activity, and starch content. In addition, PBZ treatment activated the antioxidant enzyme activities, antioxidants contents, ascorbate acid-glutathione (AsA-GSH) cycle, and related gene expression, lessening the ROS burst (H2O2 and O2∙-). However, the gibberellic acid (GA) anabolism was remarkably decreased by PBZ treatment under LL stress, downregulating the transcript levels of kaurene oxidase (KO), kaurenoic acid oxidase (KAO), and GA 20-oxidases (GA20ox). At the same time, PBZ treatment up-regulated 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, significantly increasing the endogenous abscisic acid (ABA) concentration under LL stress. Thus, our study revealed that PBZ improves the antioxidation and photosynthetic capacity, meanwhile increasing the ABA concentration and decreasing GA concentration, which ultimately enhances the LL stress tolerance in tall fescue.


Assuntos
Festuca , Lolium , Antioxidantes/farmacologia , Clorofila/metabolismo , Festuca/metabolismo , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Lolium/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triazóis/metabolismo , Triazóis/farmacologia
17.
Genome Res ; 28(10): 1427-1441, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30143597

RESUMO

Cleavage and polyadenylation is essential for 3' end processing of almost all eukaryotic mRNAs. Recent studies have shown widespread alternative cleavage and polyadenylation (APA) events leading to mRNA isoforms with different 3' UTRs and/or coding sequences. Here, we present a compendium of conserved cleavage and polyadenylation sites (PASs) in mammalian genes, based on approximately 1.2 billion 3' end sequencing reads from more than 360 human, mouse, and rat samples. We show that ∼80% of mammalian mRNA genes contain at least one conserved PAS, and ∼50% have conserved APA events. PAS conservation generally reduces promiscuous 3' end processing, stabilizing gene expression levels across species. Conservation of APA correlates with gene age, gene expression features, and gene functions. Genes with certain functions, such as cell morphology, cell proliferation, and mRNA metabolism, are particularly enriched with conserved APA events. Whereas tissue-specific genes typically have a low APA rate, brain-specific genes tend to evolve APA. In addition, we show enrichment of mRNA destabilizing motifs in alternative 3' UTR sequences, leading to substantial differences in mRNA stability between 3' UTR isoforms. Using conserved PASs, we reveal sequence motifs surrounding APA sites and a preference of adenosine at the cleavage site. Furthermore, we show that mutations of U-rich motifs around the PAS often accompany APA profile differences between species. Analysis of lncRNA PASs indicates a mechanism of PAS fixation through evolution of A-rich motifs. Taken together, our results present a comprehensive view of PAS evolution in mammals, and a phylogenic perspective on APA functions.


Assuntos
RNA Mensageiro/química , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Regiões 3' não Traduzidas , Animais , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Camundongos , Mutação , Especificidade de Órgãos , Filogenia , Poliadenilação , Estabilidade de RNA , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ratos , Especificidade da Espécie
18.
Genome Res ; 28(12): 1919-1930, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30409770

RESUMO

Targeted genotyping of transcriptome-scale genetic markers is highly attractive for genetic, ecological, and evolutionary studies, but achieving this goal in a cost-effective manner remains a major challenge, especially for laboratories working on nonmodel organisms. Here, we develop a high-throughput, sequencing-based GoldenGate approach (called HD-Marker), which addresses the array-related issues of original GoldenGate methodology and allows for highly multiplexed and flexible targeted genotyping of more than 12,000 loci in a single-tube assay (in contrast to fewer than 3100 in the original GoldenGate assay). We perform extensive analyses to demonstrate the power and performance of HD-Marker on various multiplex levels (296, 795, 1293, and 12,472 genic SNPs) across two sequencing platforms in two nonmodel species (the scallops Chlamys farreri and Patinopecten yessoensis), with extremely high capture rate (98%-99%) and genotyping accuracy (97%-99%). We also demonstrate the potential of HD-Marker for high-throughput targeted genotyping of alternative marker types (e.g., microsatellites and indels). With its remarkable cost-effectiveness (as low as $0.002 per genotype) and high flexibility in choice of multiplex levels and marker types, HD-Marker provides a highly attractive tool over array-based platforms for fulfilling genome/transcriptome-wide targeted genotyping applications, especially in nonmodel organisms.


Assuntos
Marcadores Genéticos , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Genótipo , Mutação INDEL , Repetições de Microssatélites , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Development ; 145(11)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29724757

RESUMO

Asymmetric division is crucial for embryonic development and stem cell lineages. In the one-cell Caenorhabditis elegans embryo, a contractile cortical actomyosin network contributes to asymmetric division by segregating partitioning-defective (PAR) proteins to discrete cortical domains. In the current study, we found that the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) localizes to polarized dynamic structures in C. elegans zygotes, distributing in a PAR-dependent manner along the anterior-posterior (A-P) embryonic axis. PIP2 cortical structures overlap with F-actin, and coincide with the actin regulators RHO-1 and CDC-42, as well as ECT-2. Particle image velocimetry analysis revealed that PIP2 and F-actin cortical movements are coupled, with PIP2 structures moving slightly ahead of F-actin. Importantly, we established that PIP2 cortical structure formation and movement is actin dependent. Moreover, we found that decreasing or increasing the level of PIP2 resulted in severe F-actin disorganization, revealing interdependence between these components. Furthermore, we determined that PIP2 and F-actin regulate the sizing of PAR cortical domains, including during the maintenance phase of polarization. Overall, our work establishes that a lipid membrane component, PIP2, modulates actin organization and cell polarity in C. elegans embryos.


Assuntos
Actinas/metabolismo , Divisão Celular Assimétrica/fisiologia , Caenorhabditis elegans/embriologia , Polaridade Celular/fisiologia , Lipídeos de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
20.
Bioinformatics ; 36(12): 3907-3909, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32321166

RESUMO

SUMMARY: Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. APA is dynamically regulated under different growth and differentiation conditions. Here, we present a bioinformatics package, named APAlyzer, for examining 3'UTR APA, intronic APA and gene expression changes using RNA-seq data and annotated polyadenylation sites in the PolyA_DB database. Using APAlyzer and data from the GTEx database, we present APA profiles across human tissues. AVAILABILITY AND IMPLEMENTATION: APAlyzer is freely available at https://bioconductor.org/packages/release/bioc/html/APAlyzer.html as an R/Bioconductor package. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Poliadenilação , Humanos , Poli A , Isoformas de Proteínas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA