Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11849-11862, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571023

RESUMO

A novel mid-infrared methane remote sensor integrated on a movable platform based on a 3.291-µm interband cascade laser (ICL) and wavelength modulation spectroscopy (WMS) is proposed. A transmitting-receiving coaxial, visualized optical layout is employed to minimize laser energy loss. Using a hollow retro-reflector remotely deployed as a cooperative target, the atmospheric average methane concentration over a 100-meter optical range is measured with high sensitivity. A deep neural network (DNN) filter is used for second harmonic (2f) signal denoising to compensate for the performance shortcomings of conventional filtering. Allan deviation analysis indicated that after applying the DNN filter, the limit of detection (LOD) of methane was 86.62 ppb with an average time of 1 s, decreasing to 12.03 ppb with an average time of 229 s, which is a significant promotion compared to similar work reported. The high sensitivity and stability of the proposed sensor are shown through a 24-hour continuous monitoring experiment of atmospheric methane conducted outdoors, providing a new solution for high-sensitivity remote sensing of atmospheric methane.

2.
Opt Express ; 32(7): 10962-10978, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570957

RESUMO

We propose a novel methane leakage rate remote sensor that combines a single-photon avalanche diode detector with a near-infrared 1653.7 nm low-power laser. The proposed M sequence and triangle wave signal modulation method simultaneously realizes the detection of methane leakage and target point clouds. Innovatively, the sensor's methane concentration and leakage rate quantification ability were simulated by combining the Gaussian plume diffusion model and the Risley prism. The effects of the prism rotation ratio, wind speed, leakage rate, atmospheric stability (AS), target reflectivity, signal averaging period, and concentration spatial interpolation method on leakage rate are discussed. When plume methane concentrations reduce from 10,000 to 500 ppm·m, the relative concentration bias rise from 1% to 30%, the absolute concentration bias is approximately 100 ppm·m. Two spatial concentration interpolation methods introduced leakage rate bias ranging from 6%-25%. For a low AS, the leakage rate bias under the cubic interpolation method was small (approximately 1.6%). In addition, when the initial leakage rate increased from 100 to 1,000 mg/s, the leakage rate bias was approximately 20% smaller.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA