Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2314392120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011546

RESUMO

Since the outbreak of Severe Acute Respiratory Syndrome Virus-2 (SARS-CoV-2) in 2019, more than 15 million spike protein sequences have been identified, raising a new challenge for the development of a broadly protective vaccine against the various emerging variants. We found that the virus, like most other human viruses, depends on host-made glycans to shield the conserved epitopes on spike protein from immune response and demonstrated that deletion of the glycan shields exposed highly conserved epitopes and elicited broadly protective immune responses. In this study, we identified 17 conserved epitopes from 14 million spike protein sequences and 11 of the conserved epitopes are in the S2 domain, including the six most conserved epitopes in the stem region. We also demonstrated that deletion of the glycosites in the spike messenger RNA (mRNA) S2 domain or the stem region exposed the highly conserved epitopes and elicited broadly protective immune responses, particularly CD-8+ T cell response against various SARS-CoV-2 variants, and other human coronaviruses including MERS, SARS viruses, and those causing common cold.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Açúcares , RNA Mensageiro/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas Sintéticas , Epitopos , Anticorpos Antivirais , Vacinas de mRNA
2.
J Am Chem Soc ; 145(17): 9840-9849, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37089019

RESUMO

Polysaccharides have been successfully used as immunogens for the development of vaccines against bacterial infection; however, there are no oligosaccharide-based vaccines available to date and no previous studies of their processing and presentation. We reported here the intracellular enzymatic processing and antigen presentation of an oligosaccharide-conjugate cancer vaccine prepared from the glycan of Globo-H (GH), a globo-series glycosphingolipid (GSL). This oligosaccharide-conjugate vaccine was shown to elicit antibodies against the glycan moieties of all three globo-series GSLs that are exclusively expressed on many types of cancer and their stem cells. To understand the specificity and origin of cross-reactivity of the antibodies elicited by the vaccine, we found that the vaccine is first processed by fucosidase 1 in the early endosome of dendritic cells to generate a common glycan antigen of the GSLs along with GH for MHC class II presentation. This work represents the first study of oligosaccharide processing and presentation and is expected to facilitate the design and development of glycoconjugate vaccines based on oligosaccharide antigens.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Conjugadas , Apresentação de Antígeno , Anticorpos , Polissacarídeos , Oligossacarídeos
3.
Bioconjug Chem ; 34(9): 1653-1666, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37682243

RESUMO

Coxiella burnetii is the causative agent of Q fever, for which there is yet to be an FDA-approved vaccine. This bacterial pathogen has both extra- and intracellular stages in its life cycle, and therefore both a cell-mediated (i.e., T lymphocyte) and humoral (i.e., antibody) immune response are necessary for effective eradication of this pathogen. However, most proposed vaccines elicit strong responses to only one mechanism of adaptive immunity, and some can either cause reactogenicity or lack sufficient immunogenicity. In this work, we aim to apply a nanoparticle-based platform toward producing both antibody and T cell immune responses against C. burnetii. We investigated three approaches for conjugation of the immunodominant outer membrane protein antigen (CBU1910) to the E2 nanoparticle to obtain a consistent antigen orientation: direct genetic fusion, high affinity tris-NTA-Ni conjugation to polyhistidine-tagged CBU1910, and the SpyTag/SpyCatcher (ST/SC) system. Overall, we found that the ST/SC approach yielded nanoparticles loaded with the highest number of antigens while maintaining stability, enabling formulations that could simultaneously co-deliver the protein antigen (CBU1910) and adjuvant (CpG1826) on one nanoparticle (CBU1910-CpG-E2). Using protein microarray analyses, we found that after immunization, antigen-bound nanoparticle formulations elicited significantly higher antigen-specific IgG responses than soluble CBU1910 alone and produced more balanced IgG1/IgG2c ratios. Although T cell recall assays from these protein antigen formulations did not show significant increases in antigen-specific IFN-γ production compared to soluble CBU1910 alone, nanoparticles conjugated with a CD4 peptide epitope from CBU1910 generated elevated T cell responses in mice to both the CBU1910 peptide epitope and whole CBU1910 protein. These investigations highlight the feasibility of conjugating antigens to nanoparticles for tuning and improving both humoral- and cell-mediated adaptive immunity against C. burnetii.


Assuntos
Coxiella burnetii , Febre Q , Vacinas , Animais , Camundongos , Febre Q/prevenção & controle , Antígenos de Bactérias , Anticorpos , Epitopos
4.
Biomacromolecules ; 20(7): 2703-2712, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31117354

RESUMO

Stimuli-responsive polymers are an efficient means of targeted therapy. Compared to conventional agents, they increase bioavailability and efficacy. In particular, polymer hydrogel nanoparticles (NPs) can be designed to respond when exposed to a specific environmental stimulus such as pH or temperature. However, targeting a specific metabolite as the trigger for stimuli response could further elevate selectivity and create a new class of bioresponsive materials. In this work we describe an N-isopropylacrylamide (NIPAm) NP that responds to a specific metabolite, characteristic of a hypoxic environment found in cancerous tumors. NIPAm NPs were synthesized by copolymerization with an oxamate derivative, a known inhibitor of lactate dehydrogenase (LDH). The oxamate-functionalized NPs (OxNP) efficiently sequestered LDH to produce an OxNP-protein complex. When exposed to elevated concentrations of lactic acid, a substrate of LDH and a metabolite characteristic of hypoxic tumor microenvironments, OxNP-LDH complexes swelled (65%). The OxNP-LDH complexes were not responsive to structurally related small molecules. This work demonstrates a proof of concept for tuning NP responsiveness by conjugation with a key protein to target a specific metabolite of disease.


Assuntos
Hidrogéis/farmacologia , Substâncias Macromoleculares/farmacologia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Acrilamidas/química , Acrilamidas/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Humanos , Hidrogéis/química , L-Lactato Desidrogenase/antagonistas & inibidores , Ácido Láctico/metabolismo , Substâncias Macromoleculares/química , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/farmacologia , Proteínas/química , Proteínas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
5.
Nanomedicine ; 15(1): 164-174, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30291897

RESUMO

Peptide and protein-based cancer vaccines usually fail to elicit efficient immune responses against tumors. However, delivery of these peptides and proteins as components within caged protein nanoparticles has shown promising improvements in vaccine efficacy. Advantages of protein nanoparticles over other vaccine platforms include their highly organized structures and symmetry, biodegradability, ability to be specifically functionalized at three different interfaces (inside and outside the protein cage, and between subunits in macromolecular assembly), and ideal size for vaccine delivery. In this review, we discuss different classes of virus-like particles and caged protein nanoparticles that have been used as vehicles to transport and increase the interaction of cancer vaccine components with the immune system. We review the effectiveness of these protein nanoparticles towards inducing and elevating specific immune responses, which are needed to overcome the low immunogenicity of the tumor microenvironment.


Assuntos
Vacinas Anticâncer/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Fragmentos de Peptídeos/administração & dosagem , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/imunologia , Humanos , Nanopartículas/química , Fragmentos de Peptídeos/imunologia
6.
Biomacromolecules ; 17(5): 1860-8, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27064286

RESUMO

Hydrophobic interactions often dominate the associative forces between biomacromolecules. A synthetic affinity reagent must be able to exploit and optimize these interactions. We describe synthesis of abiotic affinity reagents that sequester biomacromolecules with lipid-like domains. NIPAm-based copolymer nanoparticles (NPs) containing C4-C8 hydrophobic groups were evaluated for their affinity for lipopolysaccharides (LPS), the lipophilic component of the outer membrane of Gram-negative bacteria. Optimal affinity was found for NPs incorporating a linear C4 hydrocarbon group. 1D and 2D (1)H NMR studies revealed that in water, the longer chain (C6 and C8) alkyl groups in the hydrogel NPs were engaged in intrachain association, rendering them less available to interact with LPS. Optimal LPS-NP interaction requires maximizing hydrophobicity, while avoiding side chain aggregation. Polymer compositions with high LPS binding were grafted onto agarose beads and evaluated for LPS clearance from solution; samples containing linear C4 groups also showed the highest LPS clearance capacity.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lipídeos/química , Lipopolissacarídeos/química , Nanopartículas/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Cinética
7.
J Immunol ; 193(4): 1747-58, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25009203

RESUMO

NK cell development and homeostasis require IL-15 produced by both hematopoietic and parenchymal cells. Certain hematopoietic IL-15 sources, such as macrophages and dendritic cells, are known, whereas the source of parenchymal IL-15 remains elusive. Using two types of adipocyte-specific Il15(-/-) mice, we identified adipocytes as a parenchymal IL-15 source that supported NK cell development nonredundantly. Both adipocyte-specific Il15(-/-) mice showed reduced IL-15 production specifically in the adipose tissue but impaired NK cell development in the spleen and liver in addition to the adipose tissue. We also found that the adipose tissue harbored NK progenitors as other niches (e.g. spleen) for NK cell development, and that NK cells derived from transplanted adipose tissue populated the recipient's spleen and liver. These findings suggest that adipocyte IL-15 contributes to systemic NK cell development by supporting NK cell development in the adipose tissue, which serves as a source of NK cells for other organs.


Assuntos
Adipócitos/citologia , Diferenciação Celular/imunologia , Interleucina-15/imunologia , Células Matadoras Naturais/citologia , Adipócitos/imunologia , Adipócitos/transplante , Tecido Adiposo/imunologia , Transferência Adotiva , Animais , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Homeostase/imunologia , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Lectinas Tipo C , Fígado/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília A de Receptores Semelhantes a Lectina de Células NK/biossíntese , RNA Mensageiro/biossíntese , Receptores Imunológicos/biossíntese , Baço/citologia
8.
Biomacromolecules ; 15(10): 3540-9, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25144412

RESUMO

Collagen is the most abundant protein in extracellular matrices and is commonly used as a tissue engineering scaffold. However, collagen and other biopolymers from native sources can exhibit limitations when tuning mechanical and biological properties. Cysteines do not naturally occur within the triple-helical region of any native collagen. We utilized a novel modular synthesis strategy to fabricate variants of recombinant human collagen that contained 2, 4, or 8 non-native cysteines at precisely defined locations within each biopolymer. This bottom-up approach introduced capabilities using sulfhydryl chemistry to form hydrogels and immobilize bioactive factors. Collagen variants retained their triple-helical structure and supported cellular adhesion. Hydrogels were characterized using rheology, and the storage moduli were comparable to fibrillar collagen gels at similar concentrations. Furthermore, the introduced cysteines functioned as anchoring sites, with TGF-ß1-conjugated collagens promoting myofibroblast differentiation. This approach demonstrates the feasibility to produce custom-designed collagens with chemical functionality not available from native sources.


Assuntos
Cisteína/química , Colágenos Fibrilares/química , Proteínas Recombinantes/química , Alicerces Teciduais/química , Adesão Celular/fisiologia , Cisteína/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Humanos , Hidrogéis/química , Proteínas Recombinantes/metabolismo , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/metabolismo
9.
Biochem Eng J ; 89: 33-41, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25018664

RESUMO

Nanomaterials that are used in therapeutic applications need a high degree of uniformity and functionality which can be difficult to attain. One strategy for fabrication is to utilize the biological precision afforded by recombinant synthesis. Through protein engineering, we have produced ~27-nm dodecahedral protein nanoparticles using the thermostable E2 subunit of pyruvate dehydrogenase as a scaffold and added optical imaging, drug delivery, and tumor targeting capabilities. Cysteines in the internal cavity of the engineered caged protein scaffold (E2 variant D381C) were conjugated with maleimide-bearing Alexa Fluor 532 (AF532) and doxorubicin (DOX). The external surface was functionalized with polyethylene glycol (PEG) alone or with the tumor-targeting ligand folic acid (FA) through a PEG linker. The resulting bi-functional nanoparticles remained intact and correctly assembled. The uptake of FA-displaying nanoparticles (D381C-AF532-PEG-FA) by cells overexpressing the folate receptor was approximately six times greater than of non-targeting nanoparticles (D381C-AF532-PEG) and was confirmed to be FA-specific. Nanoparticles containing DOX were all cytotoxic in the low micromolar range. To our knowledge, this work is the first time that acid-labile drug release and folate receptor targeting have been simultaneously integrated onto recombinant protein nanoparticles, and it demonstrates the potential of using biofabrication strategies to generate functional nanomaterials.

10.
ACS Biomater Sci Eng ; 10(4): 2212-2223, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38467019

RESUMO

Macrophages are innate immune cells that interact with complex extracellular matrix environments, which have varied stiffness, composition, and structure, and such interactions can lead to the modulation of cellular activity. Collagen is often used in the culture of immune cells, but the effects of substrate functionalization conditions are not typically considered. Here, we show that the solvent system used to attach collagen onto a hydrogel surface affects its surface distribution and organization, and this can modulate the responses of macrophages subsequently cultured on these surfaces in terms of their inflammatory activation and expression of adhesion and mechanosensitive molecules. Collagen was solubilized in either acetic acid (Col-AA) or N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) (Col-HEP) solutions and conjugated onto soft and stiff polyacrylamide (PA) hydrogel surfaces. Bone marrow-derived macrophages cultured under standard conditions (pH 7.4) on the Col-HEP-derived surfaces exhibited stiffness-dependent inflammatory activation; in contrast, the macrophages cultured on Col-AA-derived surfaces expressed high levels of inflammatory cytokines and genes, irrespective of the hydrogel stiffness. Among the collagen receptors that were examined, leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) was the most highly expressed, and knockdown of the Lair-1 gene enhanced the secretion of inflammatory cytokines. We found that the collagen distribution was more homogeneous on Col-AA surfaces but formed aggregates on Col-HEP surfaces. The macrophages cultured on Col-AA PA hydrogels were more evenly spread, expressed higher levels of vinculin, and exerted higher traction forces compared to those of cells on Col-HEP. These macrophages on Col-AA also had higher nuclear-to-cytoplasmic ratios of yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), key molecules that control inflammation and sense substrate stiffness. Our results highlight that seemingly slight variations in substrate deposition for immunobiology studies can alter critical immune responses, and this is important to elucidate in the broader context of immunomodulatory biomaterial design.


Assuntos
Colágeno , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Hidrogéis/metabolismo , Citocinas/metabolismo
11.
J Immunol ; 187(3): 1212-21, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21715685

RESUMO

NK cell development requires IL-15, which is "trans-presented" to IL-15Rßγ on NK cells by IL-15Rα on other cells. In this study, we report that different levels of IL-15 trans-presentation are required for different NK cell developmental events to reach full maturation status. Because the IL-15Rα intracellular domain has the capacity to recruit signaling molecules, we generated knockin and transgenic (Tg) mice that lack the intracellular domain to assess the role of the IL-15 trans-presentation level independent of the function of this domain. The level of IL-15Rα on various cells of these mice follows the order WT > Tg6 > knockin > Tg1 ≥ knockout. Bone marrow (BM)-derived dendritic cells prepared from these mice induced Stat5 phosphorylation in NK cells. The level of phospho-Stat5 correlated with the level of IL-15Rα on BMDCs, thus offering the opportunity to study quantitative effects of IL-15 trans-presentation on NK cell development in vivo. We found that NK cell homeostasis, mature NK cell differentiation, and acquisition of Ly49 receptor and effector functions require different levels of IL-15 trans-presentation input to achieve full status. All NK cell developmental events examined were quantitatively regulated by the IL-15Rα level of BM-derived and radiation-resistant accessory cells, but not by IL-15Rα of NK cells. We also found that IL-15Rα of radiation-resistant cells was more potent than IL-15Rα of BM-derived accessory cells in support of stage 2 to stage 3 splenic mNK differentiation. In summary, each examined developmental event required a particular level of IL-15 trans-presentation by accessory cells.


Assuntos
Apresentação de Antígeno/imunologia , Diferenciação Celular/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno/genética , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Técnicas de Introdução de Genes , Homeostase/genética , Homeostase/imunologia , Interleucina-15/fisiologia , Subunidade alfa de Receptor de Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Subunidade alfa de Receptor de Interleucina-15/fisiologia , Células Matadoras Naturais/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo
12.
Methods Mol Biol ; 2671: 321-333, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37308653

RESUMO

Cancer vaccines displaying tumor-associated antigens (TAAs) train the immune system for enhanced tumor recognition and elimination. Nanoparticle-based cancer vaccines are ingested and processed by dendritic cells, which subsequently activate antigen-specific cytotoxic T cells, allowing them to identify and eliminate tumor cells displaying these TAAs. Here, we describe the procedures to conjugate TAA and adjuvant to a model protein nanoparticle platform (E2), followed by assessment of vaccine performance. Utilizing a syngeneic tumor model, the efficacy of in vivo immunization was determined by cytotoxic T lymphocyte assays and IFN-γ ELISpot ex vivo assays to measure tumor cell lysis and TAA-specific activation, respectively. In vivo tumor challenge directly allows evaluation of anti-tumor response and survival over time.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Imunização , Imunidade
13.
ACS Infect Dis ; 9(2): 239-252, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36607269

RESUMO

The vast majority of seasonal influenza vaccines administered each year are derived from virus propagated in eggs using technology that has changed little since the 1930s. The immunogenicity, durability, and breadth of response would likely benefit from a recombinant nanoparticle-based approach. Although the E2 protein nanoparticle (NP) platform has been previously shown to promote effective cell-mediated responses to peptide epitopes, it has not yet been reported to deliver whole protein antigens. In this study, we synthesized a novel maleimido tris-nitrilotriacetic acid (NTA) linker to couple protein hemagglutinin (HA) from H1N1 influenza virus to the E2 NP, and we evaluated the HA-specific antibody responses using protein microarrays. We found that recombinant H1 protein alone is immunogenic in mice but requires two boosts for IgG to be detected and is strongly IgG1 (Th2) polarized. When conjugated to E2 NPs, IgG2c is produced leading to a more balanced Th1/Th2 response. Inclusion of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) significantly enhances the immunogenicity of H1-E2 NPs while retaining the Th1/Th2 balance. Interestingly, broader homo- and heterosubtypic cross-reactivity is also observed for conjugated H1-E2 with MPLA, compared to unconjugated H1 with or without MPLA. These results highlight the potential of an NP-based delivery of HA for tuning the immunogenicity, breadth, and Th1/Th2 balance generated by recombinant HA-based vaccination. Furthermore, the modularity of this protein-protein conjugation strategy may have utility for future vaccine development against other human pathogens.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Humanos , Animais , Camundongos , Influenza Humana/prevenção & controle , Hemaglutininas , Formação de Anticorpos , Anticorpos Antivirais , Proteínas Recombinantes
14.
Biomater Sci ; 11(2): 596-610, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36476811

RESUMO

Cancer vaccine immunotherapy facilitates the immune system's recognition of tumor-associated antigens, and the biomolecular design of these vaccines using nanoparticles is one important approach towards obtaining strong anti-tumor responses. Following activation of dendritic cells (DCs), a robust CD8+ T cell-mediated adaptive immune response is critical for tumor elimination. While the role of efficient antigen-presenting myeloid DCs (mDCs) is conventionally attributed towards vaccine efficacy, participation by highly cytokine-producing plasmacytoid DCs (pDCs) is less understood and is often overlooked. We examined vaccines based on the E2 protein nanoparticle platform that delivered encapsulated TLR9 agonist bacterial-like DNA (CpG1826 or CpG1018) or TLR7 agonist viral ssRNA to determine their efficacy over free agonists in activating both mDCs and pDCs for antigen presentation. Although mDCs were only activated by nanoparticle-encapsulated TLR9 agonists, pDCs were activated by all the individually tested constructs, and CpG1826 was shown to induce pDC cytokine production. Transfer of secreted factors from pDCs that were stimulated with a vaccine formulation comprising peptide antigen and CpG1826 enhanced mDC display of the antigen, particularly when delivered in nanoparticles. Only when treated with nanoparticle-conjugated vaccine could pDCs secrete factors to induce antigen display on naïve mDCs. These results reveal that pDCs can aid mDCs, highlighting the importance of activating both pDCs and mDCs in designing effective cancer vaccines, and demonstrate the advantage of using nanoparticle-based vaccine delivery.


Assuntos
Neoplasias , Vacinas , Humanos , Receptor Toll-Like 9/metabolismo , Citocinas/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/metabolismo , Células Dendríticas
15.
BMC Biotechnol ; 12: 51, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22901055

RESUMO

BACKGROUND: The fabrication of recombinant collagen and its prescribed variants has enormous potential in tissue regeneration, cell-matrix interaction investigations, and fundamental biochemical and biophysical studies of the extracellular matrix. Recombinant expression requires proline hydroxylation, a post-translational modification which is critical for imparting stability and structure. However, these modifications are not native to typical bacterial or yeast expression systems. Furthermore, detection of low levels of 4-hydroxyproline is challenging with respect to selectivity and sensitivity. RESULTS: We have developed a new liquid chromatography-mass spectrometry (LC-MS) method to evaluate proline hydroxylation in recombinant collagen. This assay was tested in different Saccharomyces cerevisiae expression systems to evaluate the effect of gene ratio between prolyl-4-hydroxylase and collagen on the extent of hydroxylation. These systems used a human collagen III gene that was synthesized de novo from oligonucleotides. The LC-MS assay does not require derivatization, uses only picomoles of sample, and can measure proline hydroxylation levels in recombinant and native collagen ranging from approximately 0% to 40%. The hydroxylation values obtained by LC-MS are as accurate and as precise as those obtained with the conventional method of amino acid analysis. CONCLUSIONS: A facile, derivatization-free LC-MS method was developed that accurately determines the percentage of proline hydroxylation in different yeast expression systems. Using this assay, we determined that systems with a higher collagen-to-hydroxylase gene copy ratio yielded a lower percentage of hydroxylation, suggesting that a specifically balanced gene ratio is required to obtain higher hydroxylation levels.


Assuntos
Cromatografia Líquida/métodos , Colágeno/metabolismo , Espectrometria de Massas/métodos , Prolina/análise , Prolina/metabolismo , Colágeno/análise , Colágeno/genética , Humanos , Hidroxilação , Prolina/genética , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Adv Funct Mater ; 22(15): 3170-3180, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23526705

RESUMO

Biomaterials such as self-assembling biological complexes have demonstrated a variety of applications in materials science and nanotechnology. The functionality of protein-based materials, however, is often limited by the absence or locations of specific chemical conjugation sites. In this investigation, we developed a new strategy for loading organic molecules into the hollow cavity of a protein nanoparticle that relies only on non-covalent interactions, and we demonstrated its applicability in drug delivery. Based on a biomimetic model that incorporates multiple phenylalanines to create a generalized binding site, we retained and delivered the antitumor compound doxorubicin by redesigning a caged protein scaffold. Through an iterative combination of structural modeling and protein engineering, we obtained new variants of the E2 subunit of pyruvate dehydrogenase with varying levels of drug-carrying capabilities. We found that an increasing number of introduced phenylalanines within the scaffold cavity generally resulted in greater drug loading capacities. Drug loading levels could be achieved that were greater than conventional nanoparticle delivery systems. These protein nanoparticles containing doxorubicin were taken up by breast cancer cells and induced significant cell death. Our novel approach demonstrates a universal strategy to design de novo hydrophobic binding domains within protein-based scaffolds for molecular encapsulation and transport, and it broadens the ability to attach guest molecules to this class of materials.

17.
Langmuir ; 28(19): 7417-27, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22509939

RESUMO

Atomic force microscopy (AFM) studies under aqueous buffer probed the role of chemical affinity between liposomes, consisting of large unilamellar vesicles, and substrate surfaces in driving vesicle rupture and tethered lipid bilayer membrane (tLBM) formation on Au surfaces. 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio) propionate] (DSPE-PEG-PDP) was added to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles to promote interactions via Au-thiolate bond formation. Forces induced by an AFM tip leading to vesicle rupture on Au were quantified as a function of DSPE-PEG-PDP composition with and without osmotic pressure. The critical forces needed to initiate rupture of vesicles with 2.5, 5, and 10 mol % DSPE-PEG-PDP are approximately 1.1, 0.8, and 0.5 nN, respectively. The critical force needed for tLBM formation decreases from 1.1 nN (without osmotic pressure) to 0.6 nN (with an osmotic pressure due to 5 mM of CaCl(2)) for vesicles having 2.5 mol % DSPE-PEG-PDP. Forces as high as 5 nN did not lead to LBM formation from pure POPC vesicles on Au. DSPE-PEG-PDP appears to be important to anchor and deform vesicles on Au surfaces. This study demonstrates how functional lipids can be used to tune vesicle-surface interactions and elucidates the role of vesicle-substrate interactions in vesicle rupture.


Assuntos
Lipossomos/química , Ouro/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química
18.
Biomacromolecules ; 13(4): 974-81, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22416762

RESUMO

Self-assembling protein nanocapsules can be engineered for various bionanotechnology applications. Using the dodecahedral scaffold of the E2 subunit from pyruvate dehydrogenase, we introduced non-native surface cysteines for site-directed functionalization. The modified nanoparticle's structural, assembly, and thermostability properties were comparable to the wild-type scaffold (E2-WT), and after conjugation of poly(ethylene glycol) (PEG) to these cysteines, the nanoparticle remained intact and stable up to 79.7 ± 1.8 °C. PEGylation of particles reduced uptake by human monocyte-derived macrophages and MDA-MB-231 breast cancer cells, with decreased uptake as PEG chain length is increased. In vitro C4-depletion and C5a-production assays yielded 97.6 ± 10.8% serum C4 remaining and 40.1 ± 6.0 ng/mL C5a for E2-WT, demonstrating that complement activation is weak for non-PEGylated E2 nanoparticles. Conjugation of PEG to these particles moderately increased complement response to give 79.7 ± 6.0% C4 remaining and 87.6 ± 10.1 ng/mL C5a. Our results demonstrate that PEGylation of the E2 protein nanocapsules can modulate cellular uptake and induce low levels of complement activation, likely via the classical/lectin pathways.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ativação do Complemento , Macrófagos/metabolismo , Nanocápsulas/química , Linhagem Celular Tumoral , Cisteína/química , Cisteína/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Feminino , Humanos , Macrófagos/citologia , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Transporte Proteico , Propriedades de Superfície
19.
ACS Nano ; 16(2): 3311-3322, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080856

RESUMO

Natural load-bearing mammalian tissues, such as cartilage and ligaments, contain ∼70% water yet can be mechanically stiff and strong due to the highly templated structures within. Here, we present a bioinspired approach to significantly stiffen and strengthen biopolymer hydrogels and films through the combination of nanoscale architecture and templated microstructure. Imprinted submicrometer pillar arrays absorb energy and deflect cracks. The produced chitosan hydrogels show nanofiber chains aligned by nanopillar topography, subsequently templating the microstructure throughout the film. These templated nanopillar chitosan hydrogels mechanically outperform unstructured flat hydrogels, with increases in the moduli of ∼160%, up to ∼20 MPa, and work at break of ∼450%, up to 8.5 MJ m-3. Furthermore, the strength at break increases by ∼350%, up to ∼37 MPa, and it is one of the strongest hydrogels yet reported. The nanopillar templating strategy is generalizable to other biopolymers capable of forming oriented domains and strong interactions. Overall, this process yields hydrogel films that demonstrate mechanical performance comparable to that of other stiff, strong hydrogels and natural tissues.


Assuntos
Quitosana , Nanofibras , Animais , Biopolímeros/química , Cartilagem , Quitosana/química , Hidrogéis/química , Nanofibras/química
20.
ACS Cent Sci ; 8(1): 77-85, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35106375

RESUMO

Globo H (GH) is a tumor-associated carbohydrate antigen (TACA), and GH conjugations have been evaluated as potential cancer vaccines. However, like all carbohydrate-based vaccines, low immunogenicity is a major issue. Modifications of the TACA increase its immunogenicity, but the systemic modification on GH is challenging and the synthesis is cumbersome. In this study, we synthesized several azido-GH analogs for evaluation, using galactose oxidase to selectively oxidize C6-OH of the terminal galactose or N-acetylgalactosamine on lactose, Gb3, Gb4, and SSEA3 into C6 aldehyde, which was then transformed chemically to the azido group. The azido-derivatives were further glycosylated to azido-GH analogs by glycosyltransferases coupled with sugar nucleotide regeneration. These azido-GH analogs and native GH were conjugated to diphtheria toxoid cross-reactive material CRM197 for vaccination with C34 adjuvant in mice. Glycan array analysis of antisera indicated that the azido-GH glycoconjugate with azide at Gal-C6 of Lac (1-CRM197) elicited the highest antibody response not only to GH, SSEA3, and SSEA4, which share the common SSEA3 epitope, but also to MCF-7 cancer cells, which express these Globo-series glycans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA