Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Mol Med ; 24(4): 2451-2463, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957265

RESUMO

This study sought to find more exon mutation sites and lncRNA candidates associated with type 2 diabetes mellitus (T2DM) patients with obesity (O-T2DM). We used O-T2DM patients and healthy individuals to detect mutations in their peripheral blood by whole-exon sequencing. And changes in lncRNA expression caused by mutation sites were studied at the RNA level. Then, we performed GO analysis and KEGG pathway analysis. We found a total of 277 377 mutation sites between O-T2DM and healthy individuals. Then, we performed a DNA-RNA joint analysis. Based on the screening of harmful sites, 30 mutant genes shared in O-T2DM patients were screened. At the RNA level, mutations of 106 differentially expressed genes were displayed. Finally, a consensus mutation site and differential expression consensus gene screening were performed. In the current study, the results revealed significant differences in exon sites in peripheral blood between O-T2DM and healthy individuals, which may play an important role in the pathogenesis of O-T2DM by affecting the expression of the corresponding lncRNA. This study provides clues to the molecular mechanisms of metabolic disorders in O-T2DM patients at the DNA and RNA levels, as well as biomarkers of the risk of these disorders.


Assuntos
Diabetes Mellitus Tipo 2/genética , Obesidade/genética , RNA Longo não Codificante/genética , Adulto , Estudos de Casos e Controles , DNA/genética , Éxons , Feminino , Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , RNA/genética , Sequenciamento do Exoma/métodos
2.
Appl Microbiol Biotechnol ; 104(16): 7143-7153, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32623494

RESUMO

The gut microbiota is crucial in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the metabolism of T2DM patients is not well-understood. We aimed to identify the differences on composition and function of gut microbiota between T2DM patients with obesity and healthy people. In this study, 6 T2DM patients with obesity and 6 healthy volunteers were recruited, and metagenomic approach and bioinformatics analysis methods were used to understand the composition of the gut microbiota and the metabolic network. We found a decrease in the abundance of Firmicutes, Oribacterium, and Paenibacillus; this may be attributed to a possible mechanism and biological basis of T2DM; moreover, we identified three critical bacterial taxa, Bacteroides plebeius, Phascolarctobacterium sp. CAG207, and the order Acidaminococcales that can potentially be used for T2DM treatment. We also revealed the composition of the microbiota through functional annotation based on multiple databases and found that carbohydrate metabolism contributed greatly to the pathogenesis of T2DM. This study helps in elucidating the different metabolic roles of microbes in T2DM patients with obesity.


Assuntos
Bactérias/classificação , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Metagenoma , Obesidade/microbiologia , Adulto , Bactérias/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 2/fisiopatologia , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade
3.
Microbiol Spectr ; 10(3): e0032922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35583337

RESUMO

The gut microbiota is important in the occurrence and development of obesity. It can not only via its metabolites, but also through microbiota-gut-brain-liver interactions, directly or indirectly, influence obesity. Quinoa, known as one kind of pseudocereals and weight loss food supplements, has been high-profile for its high nutritional value and broad applications. In this context, we produced high-fat diet-induced (HFD) obese mouse models and assessed the efficacy of quinoa with saponin and quinoa without saponin on obesity. We explored the potential therapeutic mechanisms of quinoa using methods such as 16S rRNA, Western blotting, Immunohistochemical (IHC). Our results indicated that quinoa can improve the obese symptoms significantly on HFD mice, as well as aberrant glucose and lipid metabolism. Further analyses suggest that quinoa can regulate microbiota in the colon and have predominantly regulation on Bacteroidetes, Actinobacteria and Desulfovibrio, meanwhile can decrease the F/B ratio and the abundance of Blautia. Contemporaneously, quinoa can upregulate the expression of TGR5 in the colon and brain, as well as GLP-1 in the colon, liver and brain. while downregulate the expression of TLR4 in the colon and liver, as well as markers of ER stress and oxidative stress in livers and serums. Beyond this, tight junctional proteins in colons and brains are also increased in response to quinoa. Therefore, quinoa can effectively reduce obesity and may possibly exert through microbiota-gut-brain-liver interaction mechanisms. IMPORTANCE Gut microbiota has been investigated extensively, as a driver of obesity as well as a therapeutic target. Studies of its mechanisms are predominantly microbiota-gut-brain axis or microbiota-gut-liver axis. Recent studies have shown that there is an important correlation between the gut-brain-liver axis and the energy balance of the body. Our research focus on microbiota-gut-brain-liver axis, as well as influences of quinoa in intestinal microbiota. We extend this study to the interaction between microbiota and brains, and the result shows obvious differences in the composition of the microbiome between the HFD group and others. These observations infer that besides the neurotransmitter and related receptors, microbiota itself may be a mediator for regulating bidirectional communication, along the gut-brain-liver axis. Taken together, these results also provide strong evidence for widening the domain of applicability of quinoa.


Assuntos
Chenopodium quinoa , Microbioma Gastrointestinal , Saponinas , Animais , Encéfalo/metabolismo , Chenopodium quinoa/genética , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , RNA Ribossômico 16S , Saponinas/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico
4.
Biomed Pharmacother ; 153: 113286, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724506

RESUMO

PURPOSE: To evaluate the effect of naringenin on improving PCOS and explore the mechanism. METHODS: Firstly, we carried out differential gene expression analysis from transcriptome sequencing data of human oocyte to screen the KEGG pathway, then the PCOS-like rat model was induced by letrozole. They were randomly divided into four groups: Normal group (N), PCOS group (P), Diane-35 group (D), and Naringenin group (Nar). The changes of estrus cycle, body weight, ovarian function, serum hormone levels, glucose metabolism, along with the expression of SIRT1, PGC-1ɑ, claudin-1 and occludin of the ovary and colon were investigated. Furthermore, the composition of the gut microbiome of fecal was tested. RESULTS: By searching the KEGG pathway in target genes, we found that at least 15 KEGG pathways are significantly enriched in the ovarian function, such as AMPK signaling pathway, insulin secretion, and ovarian steroidogenesis. Interestingly, naringenin supplementation significantly reduced body weight, ameliorated hormone levels, improved insulin resistance, and mitigated pathological changes in ovarian tissue, up-regulated the expression of PGC-1ɑ, SIRT1, occludin and claudin-1 in colon. In addition, we also found that the abundance of Prevotella and Gemella was down-regulated, while the abundance of Butyricimonas, Lachnospira, Parabacteroides, Butyricicoccus, Streptococcus, Coprococcus was up-regulated. CONCLUSION: Our data suggest that naringenin exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota and SIRT1/PGC-1ɑ signaling pathway. Our research may provide a new perspective for the treatment of PCOS and related diseases.


Assuntos
Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Animais , Peso Corporal , Claudina-1/genética , Claudina-1/farmacologia , Feminino , Flavanonas , Hormônios , Humanos , Letrozol/efeitos adversos , Ocludina , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/metabolismo
5.
Anat Rec (Hoboken) ; 303(8): 2154-2167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353209

RESUMO

A syndrome (Zheng in Chinese) plays a critical role in disease identification, diagnosis, and treatment in traditional Chinese medicine (TCM). Clinically, the liver Qi stagnation and spleen deficiency syndrome (LQSSDS) is one of the most common syndrome patterns. Over the past few decades, several animal models have been developed to understand the potential mechanisms of LQSSDS, but until now, simulation of the syndrome is still unclear. Recently, several studies have confirmed that an animal model combining a disease and a syndrome is appropriate for simulating TCM syndromes. Overlapping previous studies have reported that depression is highly associated with LQSSDS; hence, we attempted to develop a rat model combining depression and LQSSDS. We exposed the rats to different durations of chronic unpredictable mild stress (CUMS). Subsequently, the evaluation indicators at macrolevel consisted of behavioral tests including open field test, sucrose preference test, and forced swim test, food intake, body weight, white adipose tissue, fecal water content, visceral hypersensitivity, and small bowel transit, and the evaluation indicators at microlevel included changes of hypothalamic-pituitary-adrenal axis. Serum D-xylose absorption was used to comprehensively confirm and assess whether the model was successful during the CUMS-induced process. The results showed that rats exposed to 6-week CUMS procedure exhibited significantly similar traits to the phenotypes of LQSSDS and depression. This study provided a new rat model for the LQSSDS and could potentially lead to a better understanding of the pathophysiology of LQSSDS and the development of new drugs for this syndrome.


Assuntos
Depressão/fisiopatologia , Modelos Animais de Doenças , Fígado/fisiopatologia , Medicina Tradicional Chinesa , Baço/fisiopatologia , Animais , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Sistema Hipófise-Suprarrenal/fisiopatologia , Qi , Ratos , Ratos Transgênicos
6.
Artigo em Inglês | MEDLINE | ID: mdl-31320911

RESUMO

Curcumin is a compound extracted from the Curcuma longa L, which possesses a wide range of pharmacological effects. However, few studies have collected scientific evidence on its dual effect on angiogenesis. The present review gathered the fragmented information available in the literature to discuss the dual effect and possible mechanisms of curcumin on angiogenesis. Available information concerning the effect of curcumin on angiogenesis is compiled from scientific databases, including PubMed and Web of Science using the key term (curcumin and angiogenesis). The results were reviewed to identify relevant articles. Related literature demonstrated that curcumin has antiangiogenesis effect via regulating multiple factors, including proangiogenesis factor VEGF, MMPs, and FGF, both in vivo and in vitro, and could promote angiogenesis under certain circumstances via these factors. This paper provided a short review on bidirectional action of curcumin, which should be useful for further study and application of this compound that require further studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA