Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.385
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352108

RESUMO

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Assuntos
5-Metilcitosina/metabolismo , Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas/genética
2.
Proc Natl Acad Sci U S A ; 121(2): e2315898120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165930

RESUMO

Protection against endothelial damage is recognized as a frontline approach to preventing the progression of cytokine release syndrome (CRS). Accumulating evidence has demonstrated that interleukin-6 (IL-6) promotes vascular endothelial damage during CRS, although the molecular mechanisms remain to be fully elucidated. Targeting IL-6 receptor signaling delays CRS progression; however, current options are limited by persistent inhibition of the immune system. Here, we show that endothelial IL-6 trans-signaling promoted vascular damage and inflammatory responses via hypoxia-inducible factor-1α (HIF1α)-induced glycolysis. Using pharmacological inhibitors targeting HIF1α activity or mice with the genetic ablation of gp130 in the endothelium, we found that inhibition of IL-6R (IL-6 receptor)-HIF1α signaling in endothelial cells protected against vascular injury caused by septic damage and provided survival benefit in a mouse model of sepsis. In addition, we developed a short half-life anti-IL-6R antibody (silent anti-IL-6R antibody) and found that it was highly effective at augmenting survival for sepsis and severe burn by strengthening the endothelial glycocalyx and reducing cytokine storm, and vascular leakage. Together, our data advance the role of endothelial IL-6 trans-signaling in the progression of CRS and indicate a potential therapeutic approach for burns and sepsis.


Assuntos
Receptor gp130 de Citocina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , Receptores de Interleucina-6 , Sepse , Animais , Camundongos , Receptor gp130 de Citocina/genética , Síndrome da Liberação de Citocina , Células Endoteliais , Receptores de Interleucina-6/genética , Sepse/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
3.
Am J Hum Genet ; 110(7): 1162-1176, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352861

RESUMO

Large-scale genetic association studies have identified multiple susceptibility loci for nasopharyngeal carcinoma (NPC), but the underlying biological mechanisms remain to be explored. To gain insights into the genetic etiology of NPC, we conducted a follow-up study encompassing 6,907 cases and 10,472 controls and identified two additional NPC susceptibility loci, 9q22.33 (rs1867277; OR = 0.74, 95% CI = 0.68-0.81, p = 3.08 × 10-11) and 17q12 (rs226241; OR = 1.42, 95% CI = 1.26-1.60, p = 1.62 × 10-8). The two additional loci, together with two previously reported genome-wide significant loci, 5p15.33 and 9p21.3, were investigated by high-throughput sequencing for chromatin accessibility, histone modification, and promoter capture Hi-C (PCHi-C) profiling. Using luciferase reporter assays and CRISPR interference (CRISPRi) to validate the functional profiling, we identified PHF2 at locus 9q22.33 as a susceptibility gene. PHF2 encodes a histone demethylase and acts as a tumor suppressor. The risk alleles of the functional SNPs reduced the expression of the target gene PHF2 by inhibiting the enhancer activity of its long-range (4.3 Mb) cis-regulatory element, which promoted proliferation of NPC cells. In addition, we identified CDKN2B-AS1 as a susceptibility gene at locus 9p21.3, and the NPC risk allele of the functional SNP rs2069418 promoted the expression of CDKN2B-AS1 by increasing its enhancer activity. The overexpression of CDKN2B-AS1 facilitated proliferation of NPC cells. In summary, we identified functional SNPs and NPC susceptibility genes, which provides additional explanations for the genetic association signals and helps to uncover the underlying genetic etiology of NPC development.


Assuntos
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Seguimentos , Predisposição Genética para Doença , Estudos de Associação Genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Homeodomínio/genética
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436558

RESUMO

Recently, there has been a growing interest in variable selection for causal inference within the context of high-dimensional data. However, when the outcome exhibits a skewed distribution, ensuring the accuracy of variable selection and causal effect estimation might be challenging. Here, we introduce the generalized median adaptive lasso (GMAL) for covariate selection to achieve an accurate estimation of causal effect even when the outcome follows skewed distributions. A distinctive feature of our proposed method is that we utilize a linear median regression model for constructing penalty weights, thereby maintaining the accuracy of variable selection and causal effect estimation even when the outcome presents extremely skewed distributions. Simulation results showed that our proposed method performs comparably to existing methods in variable selection when the outcome follows a symmetric distribution. Besides, the proposed method exhibited obvious superiority over the existing methods when the outcome follows a skewed distribution. Meanwhile, our proposed method consistently outperformed the existing methods in causal estimation, as indicated by smaller root-mean-square error. We also utilized the GMAL method on a deoxyribonucleic acid methylation dataset from the Alzheimer's disease (AD) neuroimaging initiative database to investigate the association between cerebrospinal fluid tau protein levels and the severity of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Simulação por Computador , Bases de Dados Factuais , Modelos Lineares , Processamento de Proteína Pós-Traducional
5.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38547321

RESUMO

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Assuntos
Vacina contra a Peste , Vacinas , Yersinia pestis , Humanos , Animais , Camundongos , Yersinia pestis/genética , Fases de Leitura Aberta , Vacina contra a Peste/genética , Citocinas/genética
6.
Proc Natl Acad Sci U S A ; 120(11): e2217734120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888661

RESUMO

Degradable polymer matrices and porous scaffolds provide powerful mechanisms for passive, sustained release of drugs relevant to the treatment of a broad range of diseases and conditions. Growing interest is in active control of pharmacokinetics tailored to the needs of the patient via programmable engineering platforms that include power sources, delivery mechanisms, communication hardware, and associated electronics, most typically in forms that require surgical extraction after a period of use. Here we report a light-controlled, self-powered technology that bypasses key disadvantages of these systems, in an overall design that is bioresorbable. Programmability relies on the use of an external light source to illuminate an implanted, wavelength-sensitive phototransistor to trigger a short circuit in an electrochemical cell structure that includes a metal gate valve as its anode. Consequent electrochemical corrosion eliminates the gate, thereby opening an underlying reservoir to release a dose of drugs by passive diffusion into surrounding tissue. A wavelength-division multiplexing strategy allows release to be programmed from any one or any arbitrary combination of a collection of reservoirs built into an integrated device. Studies of various bioresorbable electrode materials define the key considerations and guide optimized choices in designs. In vivo demonstrations of programmed release of lidocaine adjacent the sciatic nerves in rat models illustrate the functionality in the context of pain management, an essential aspect of patient care that could benefit from the results presented here.


Assuntos
Implantes Absorvíveis , Sistemas de Liberação de Medicamentos , Ratos , Animais , Eletrônica , Polímeros
7.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36592061

RESUMO

Drug-drug interaction (DDI) prediction identifies interactions of drug combinations in which the adverse side effects caused by the physicochemical incompatibility have attracted much attention. Previous studies usually model drug information from single or dual views of the whole drug molecules but ignore the detailed interactions among atoms, which leads to incomplete and noisy information and limits the accuracy of DDI prediction. In this work, we propose a novel dual-view drug representation learning network for DDI prediction ('DSN-DDI'), which employs local and global representation learning modules iteratively and learns drug substructures from the single drug ('intra-view') and the drug pair ('inter-view') simultaneously. Comprehensive evaluations demonstrate that DSN-DDI significantly improved performance on DDI prediction for the existing drugs by achieving a relatively improved accuracy of 13.01% and an over 99% accuracy under the transductive setting. More importantly, DSN-DDI achieves a relatively improved accuracy of 7.07% to unseen drugs and shows the usefulness for real-world DDI applications. Finally, DSN-DDI exhibits good transferability on synergistic drug combination prediction and thus can serve as a generalized framework in the drug discovery field.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Interações Medicamentosas , Descoberta de Drogas , Biologia Computacional
8.
Nat Chem Biol ; 19(8): 1004-1012, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37322153

RESUMO

5-methylcytosine (5mC) is the most important DNA modification in mammalian genomes. The ideal method for 5mC localization would be both nondestructive of DNA and direct, without requiring inference based on detection of unmodified cytosines. Here we present direct methylation sequencing (DM-Seq), a bisulfite-free method for profiling 5mC at single-base resolution using nanogram quantities of DNA. DM-Seq employs two key DNA-modifying enzymes: a neomorphic DNA methyltransferase and a DNA deaminase capable of precise discrimination between cytosine modification states. Coupling these activities with deaminase-resistant adapters enables accurate detection of only 5mC via a C-to-T transition in sequencing. By comparison, we uncover a PCR-related underdetection bias with the hybrid enzymatic-chemical TET-assisted pyridine borane sequencing approach. Importantly, we show that DM-Seq, unlike bisulfite sequencing, unmasks prognostically important CpGs in a clinical tumor sample by not confounding 5mC with 5-hydroxymethylcytosine. DM-Seq thus offers an all-enzymatic, nondestructive, faithful and direct method for the reading of 5mC alone.


Assuntos
5-Metilcitosina , Metilação de DNA , Animais , Citosina , DNA/genética , Análise de Sequência de DNA/métodos , Mamíferos/genética
9.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38212288

RESUMO

Resting heart rate (RHR) has been linked to impaired cortical structure in observational studies. However, the extent to which this association is potentially causal has not been determined. Using genetic data, this study aimed to reveal the causal effect of RHR on brain cortical structure. A Two-Sample Mendelian randomization (MR) analysis was conducted. Sensitivity analyses, weighted median, MR Pleiotropy residual sum and outlier, and MR-Egger regression were conducted to evaluate heterogeneity and pleiotropy. A causal relationship between RHR and cortical structures was identified by MR analysis. On the global scale, elevated RHR was found to decrease global surface area (SA; P < 0.0125). On a regional scale, the elevated RHR significantly decreased the SA of pars triangularis without global weighted (P = 1.58 × 10-4) and the thickness (TH) of the paracentral with global weighted (P = 3.56 × 10-5), whereas it increased the TH of banks of the superior temporal sulcus in the presence of global weighted (P = 1.04 × 10-4). MR study provided evidence that RHR might be causally linked to brain cortical structure, which offers a different way to understand the heart-brain axis theory.


Assuntos
Encéfalo , Análise da Randomização Mendeliana , Frequência Cardíaca , Encéfalo/diagnóstico por imagem , Córtex Pré-Frontal , Área de Broca , Estudo de Associação Genômica Ampla
10.
J Proteome Res ; 23(5): 1702-1712, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38640356

RESUMO

Several lossy compressors have achieved superior compression rates for mass spectrometry (MS) data at the cost of storage precision. Currently, the impacts of precision losses on MS data processing have not been thoroughly evaluated, which is critical for the future development of lossy compressors. We first evaluated different storage precision (32 bit and 64 bit) in lossless mzML files. We then applied 10 truncation transformations to generate precision-lossy files: five relative errors for intensities and five absolute errors for m/z values. MZmine3 and XCMS were used for feature detection and GNPS for compound annotation. Lastly, we compared Precision, Recall, F1 - score, and file sizes between lossy files and lossless files under different conditions. Overall, we revealed that the discrepancy between 32 and 64 bit precision was under 1%. We proposed an absolute m/z error of 10-4 and a relative intensity error of 2 × 10-2, adhering to a 5% error threshold (F1 - scores above 95%). For a stricter 1% error threshold (F1 - scores above 99%), an absolute m/z error of 2 × 10-5 and a relative intensity error of 2 × 10-3 were advised. This guidance aims to help researchers improve lossy compression algorithms and minimize the negative effects of precision losses on downstream data processing.


Assuntos
Compressão de Dados , Espectrometria de Massas , Metabolômica , Espectrometria de Massas/métodos , Metabolômica/métodos , Metabolômica/estatística & dados numéricos , Compressão de Dados/métodos , Software , Humanos , Algoritmos
11.
J Cell Mol Med ; 28(1): e18020, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909722

RESUMO

Anti-angiogenesis is a promising therapeutic strategy for delaying tumour progression that offers, new hope for gastric cancer targeted therapy. The purpose of this study was to investigate the precise mechanism by which Kin of IRRE-like protein 1 (KIRREL) contributes to the development of gastric cancer, particularly in terms of tumour angiogenesis. Differential expression of KIRREL in tissues and cells was detected using quantitative real-time polymerase chain reaction, western blotting and immunohistochemistry. A bioinformatics analysis was conducted to screen for the function and pathway enrichment of KIRREL in gastric cancer. Lentivirus-induced KIRREL silencing in SNU-5 cells and lentivirus-induced KIRREL overexpression in AGS cells were used to study the effect of KIRREL on the proliferation, cell cycle and angiogenesis of gastric cancer cells. Moreover, the expressions of PI3K, P-PI3K, AKT, P-AKT, mTOR, P-mTOR, HIF-1α and VEGF were also detected. Gastric cancer tissues and cells had high levels of KIRREL expression, which is associated with the proliferation, cell cycle and angiogenesis of gastric cancer cells. After silencing and overexpressing KIRREL in SNU-5 and AGS cells, respectively, the proliferation and angiogenesis of SNU-5 cells were inhibited, while the proliferation and angiogenesis of AGS cells were promoted. According to a bioinformatics analysis of the KIRREL gene, angiogenesis regulation and the PI3K/AKT pathway were highly connected. The PI3K/AKT/mTOR pathway was repressed and stimulated by KIRREL silencing and overexpression, respectively. IGF-1, an AKT agonist, and LY294002, an inhibitor, reversed the effects of KIRREL silencing and overexpression on the PI3K/AKT/mTOR pathway and on gastric cancer cell proliferation and angiogenesis. KIRREL may mediate the proliferation and angiogenesis of gastric cancer cells through the PI3K/AKT/mTOR signalling pathway. These findings could help in the further development of potential anti-angiogenesis targets.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/genética , Angiogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Serina-Treonina Quinases TOR/metabolismo
12.
J Cell Mol Med ; 28(1): e18023, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38146147

RESUMO

In recent years, an increasing number of observational studies have revealed an association between gut microbiota composition and psoriasis patients. However, whether this association reflects a causal relationship remains unclear. This study aimed to identify the causal relationship between gut microbiota and psoriasis through relevant research. In order to determine whether gut microbiota and psoriasis are causally related, we conducted a Mendelian randomization analysis using summary statistics from genome-wide association studies (GWAS). As the exposure factor, we used summary statistics data from a GWAS study conducted by the MiBioGen Consortium, including 18,340 individuals with whole-genome gut microbiota composition, and data from the FinnGen GWAS study on psoriasis, including 9267 patients and 364,071 controls as the disease outcome. Two-sample Mendelian randomization analysis was subsequently performed with inverse variance weighted, MR-Egger and weighted median, while sensitivity analyses were conducted to address heterogeneity and horizontal pleiotropy. The IVW results confirmed the causal relationship between certain gut microbiota groups and psoriasis. Specifically, family Veillonellaceae (OR = 1.162, 95% CI: 1.038-1.301, p = 0.009), genus Candidatus Soleaferrea (OR = 1.123, 95% CI: 1.011-1.247, p = 0.030) and genus Eubacterium fissicatena group (OR = 0.831, 95% CI: 0.755-0.915, p = 0.00016) showed significant associations. Sensitivity analysis did not reveal any abnormalities in SNPs. Currently, we have found some causal relationship between the gut microbiota and psoriasis. However, the study needs further RCTs for further validation.


Assuntos
Microbioma Gastrointestinal , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
13.
Plant J ; 113(5): 1062-1079, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606413

RESUMO

Sugar and anthocyanin are important indicators of fruit quality, and understanding the mechanism underlying their accumulation is essential for breeding high-quality fruit. We identified an R2R3-MYB transcription factor MdMYB305 in the red-fleshed apple progeny, which was positively correlated with fruit sugar content but negatively correlated with anthocyanin content. Transient injection, stable expression [overexpressing and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)], and heterologous transformation of tomato confirmed that MdMYB305 promotes the accumulation of sugar and inhibits the synthesis of anthocyanin. A series of molecular experiments (such as electrophoretic mobility shift and luciferase assays) confirmed that MdMYB305 combines with sugar-related genes (MdCWI1/MdVGT3/MdTMT2) and anthocyanin-related genes (MdF3H/MdDFR/MdUFGT), promoting and inhibiting their activities, and finally regulating the sugar and anthocyanin content of fruits. In addition, the study also found that MdMYB305 competes with MdMYB10 for the MdbHLH33 binding site to balance sugar and anthocyanin accumulation in the fruits, which provides a reference value for exploring more functions of the MYB-bHLH-MYB complex and the balance relationship between sugar and anthocyanin in the future.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Açúcares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal
14.
Immunology ; 172(2): 313-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38462236

RESUMO

This study longitudinally evaluated the immune response in individuals over a year after receiving three doses of an inactivated SARS-CoV-2 vaccine, focusing on reactions to Omicron breakthrough infections. From 63 blood samples of 37 subjects, results showed that the third booster enhanced the antibody response against Alpha, Beta, and Delta VOCs but was less effective against Omicron. Although antibody titres decreased post-vaccination, SARS-CoV-2-specific T-cell responses, both CD4+ and CD8+, remained stable. Omicron breakthrough infections significantly improved neutralization against various VOCs, including Omicron. However, the boost in antibodies against WT, Alpha, Beta, and Delta variants was more pronounced. Regarding T cells, breakthrough infection predominantly boosted the CD8+ T-cell response, and the intensity of the spike protein-specific T-cell response was roughly comparable between WT and Omicron BA.5.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas de Produtos Inativados , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Feminino , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Adulto , Pessoa de Meia-Idade , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD8-Positivos/imunologia , Vacinação/métodos , Imunização Secundária , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T CD4-Positivos/imunologia , Idoso , Linfócitos T/imunologia , Infecções Irruptivas
15.
J Am Chem Soc ; 146(22): 15496-15505, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785353

RESUMO

The practical application of aqueous zinc-ion batteries (AZIBs) is greatly challenged by rampant dendrites and pestilent side reactions resulting from an unstable Zn-electrolyte interphase. Herein, we report the construction of a reliable superstructured solid electrolyte interphase for stable Zn anodes by using mesoporous polydopamine (2D-mPDA) platelets as building blocks. The interphase shows a biomimetic nacre's "brick-and-mortar" structure and artificial transmembrane channels of hexagonally ordered mesopores in the plane, overcoming the mechanical robustness and ionic conductivity trade-off. Experimental results and simulations reveal that the -OH and -NH groups on the surface of artificial ion channels can promote rapid desolvation kinetics and serve as an ion sieve to homogenize the Zn2+ flux, thus inhibiting side reactions and ensuring uniform Zn deposition without dendrites. The 2D-mPDA@Zn electrode achieves an ultralow nucleation potential of 35 mV and maintains a Coulombic efficiency of 99.8% over 1500 cycles at 5 mA cm-2. Moreover, the symmetric battery exhibits a prolonged lifespan of over 580 h at a high current density of 20 mA cm-2. This biomimetic superstructured interphase also demonstrates the high feasibility in Zn//VO2 full cells and paves a new route for rechargeable aqueous metal-ion batteries.

16.
Mol Cancer ; 23(1): 4, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184608

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS: High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS: In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS: Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Processamento Alternativo , RNA Circular/genética , MicroRNAs/genética , Neoplasias Renais/genética , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Citocromo P-450 CYP1B1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética
17.
Int J Cancer ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894502

RESUMO

Epstein-Barr virus (EBV) is detected in nearly 100% of nonkeratinizing nasopharyngeal carcinoma (NPC) and EBV-based biomarkers are used for NPC screening in endemic regions. Immunoglobulin A (IgA) against EBV nuclear antigen 1 (EBNA1) and viral capsid antigen (VCA), and recently identified anti-BNLF2b antibodies have been shown to be the most effective screening tool; however, the screening efficacy still needs to be improved. This study developed a multiplex serological assay by testing IgA and immunoglobulin G (IgG) antibodies against representative EBV antigens that are highly transcribed in NPC and/or function crucially in viral reactivation, including BALFs, BNLF2a/b, LF1, LF2, and Zta (BZLF1). Among them, BNLF2b-IgG had the best performance distinguishing NPC patients from controls (area under the curve: 0.951, 95% confidence interval [CI]: 0.913-0.990). Antibodies to lytic antigens BALF2 and VCA were significantly higher in advanced-stage than in early-stage tumors; in contrast, antibodies to latent protein EBNA1 and early lytic antigen BNLF2b were not correlated with tumor progression. Accordingly, a novel strategy combining EBNA1-IgA and BNLF2b-IgG was proposed and validated improving the integrated discrimination by 15.8% (95% CI: 9.8%-21.7%, p < .0001) compared with the two-antibody method. Furthermore, we found EBV antibody profile in patients was more complicated compared with that in healthy carriers, in which stronger correlations between antibodies against different phases of antigens were observed. Overall, our serological assay indicated that aberrant latent infection of EBV in nasopharyngeal epithelial cells was probably a key step in NPC initiation, while more lytic protein expression might be involved in NPC progression.

18.
Apoptosis ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615304

RESUMO

Ferroptosis is a new discovered regulated cell death triggered by the ferrous ion (Fe2+)-dependent accumulation of lipid peroxides associated with cancer and many other diseases. The mechanism of ferroptosis includes oxidation systems (such as enzymatic oxidation and free radical oxidation) and antioxidant systems (such as GSH/GPX4, CoQ10/FSP1, BH4/GCH1 and VKORC1L1/VK). Among them, ferroptosis suppressor protein 1 (FSP1), as a crucial regulatory factor in the antioxidant system, has shown a crucial role in ferroptosis. FSP1 has been well validated to ferroptosis in three ways, and a variety of intracellular factors and drug molecules can alleviate ferroptosis via FSP1, which has been demonstrated to alter the sensitivity and effectiveness of cancer therapies, including chemotherapy, radiotherapy, targeted therapy and immunotherapy. This review aims to provide important frameworks that, bring the regulation of FSP1 mediated ferroptosis into cancer therapies on the basis of existing studies.

19.
Mol Med ; 30(1): 89, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879488

RESUMO

BACKGROUND: Myocardial infarction (MI) leads to enhanced activity of cardiac fibroblasts (CFs) and abnormal deposition of extracellular matrix proteins, resulting in cardiac fibrosis. Tartrate-resistant acid phosphatase 5 (ACP5) has been shown to promote cell proliferation and phenotypic transition. However, it remains unclear whether ACP5 is involved in the development of cardiac fibrosis after MI. The present study aimed to investigate the role of ACP5 in post-MI fibrosis and its potential underlying mechanisms. METHODS: Clinical blood samples were collected to detect ACP5 concentration. Myocardial fibrosis was induced by ligation of the left anterior descending coronary artery. The ACP5 inhibitor, AubipyOMe, was administered by intraperitoneal injection. Cardiac function and morphological changes were observed on Day 28 after injury. Cardiac CFs from neonatal mice were extracted to elucidate the underlying mechanism in vitro. The expression of ACP5 was silenced by small interfering RNA (siRNA) and overexpressed by adeno-associated viruses to evaluate its effect on CF activation. RESULTS: The expression of ACP5 was increased in patients with MI, mice with MI, and mice with Ang II-induced fibrosis in vitro. AubipyOMe inhibited cardiac fibrosis and improved cardiac function in mice after MI. ACP5 inhibition reduced cell proliferation, migration, and phenotypic changes in CFs in vitro, while adenovirus-mediated ACP5 overexpression had the opposite effect. Mechanistically, the classical profibrotic pathway of glycogen synthase kinase-3ß (GSK3ß)/ß-catenin was changed with ACP5 modulation, which indicated that ACP5 had a positive regulatory effect. Furthermore, the inhibitory effect of ACP5 deficiency on the GSK3ß/ß-catenin pathway was counteracted by an ERK activator, which indicated that ACP5 regulated GSK3ß activity through ERK-mediated phosphorylation, thereby affecting ß-catenin degradation. CONCLUSION: ACP5 may influence the proliferation, migration, and phenotypic transition of CFs, leading to the development of myocardial fibrosis after MI through modulating the ERK/GSK3ß/ß-catenin signaling pathway.


Assuntos
Proliferação de Células , Fibrose , Infarto do Miocárdio , Fosfatase Ácida Resistente a Tartarato , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Camundongos , Humanos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fosfatase Ácida Resistente a Tartarato/genética , Masculino , Modelos Animais de Doenças , Fibroblastos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Movimento Celular
20.
Anal Chem ; 96(8): 3429-3435, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351845

RESUMO

The subtypes of hematological malignancies (HM) with minimal molecular profile differences display an extremely heterogeneous clinical course and a discrepant response to certain treatment regimens. Profiling the surface protein markers offers a potent solution for precision diagnosis of HM by differentiating among the subtypes of cancer cells. Herein, we report the use of Cell-SELEX technology to generate a panel of high-affinity aptamer probes that are able to discriminate subtle differences among surface protein profiles between different HM cells. Experimental results show that these aptamers with apparent dissociation constants (Kd) below 10 nM display a unique recognition pattern on different HM subtypes. By combining a machine learning model on the basis of partial least-squares discriminant analysis, 100% accuracy was achieved for the classification of different HM cells. Furthermore, we preliminarily validated the effectiveness of the aptamer-based multiparameter analysis strategy from a clinical perspective by accurately classifying complex clinical samples, thus providing a promising molecular tool for precise HM phenotyping.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Hematológicas , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Análise Discriminante , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Proteínas de Membrana , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA