Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 579(7797): 67-72, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094661

RESUMO

The Hall-Petch relationship, according to which the strength of a metal increases as the grain size decreases, has been reported to break down at a critical grain size of around 10 to 15 nanometres1,2. As the grain size decreases beyond this point, the dominant mechanism of deformation switches from a dislocation-mediated process to grain boundary sliding, leading to material softening. In one previous approach, stabilization of grain boundaries through relaxation and molybdenum segregation was used to prevent this softening effect in nickel-molybdenum alloys with grain sizes below 10 nanometres3. Here we track in situ the yield stress and deformation texturing of pure nickel samples of various average grain sizes using a diamond anvil cell coupled with radial X-ray diffraction. Our high-pressure experiments reveal continuous strengthening in samples with grain sizes from 200 nanometres down to 3 nanometres, with the strengthening enhanced (rather than reduced) at grain sizes smaller than 20 nanometres. We achieve a yield strength of approximately 4.2 gigapascals in our 3-nanometre-grain-size samples, ten times stronger than that of a commercial nickel material. A maximum flow stress of 10.2 gigapascals is obtained in nickel of grain size 3 nanometres for the pressure range studied here. We see similar patterns of compression strengthening in gold and palladium samples down to the smallest grain sizes. Simulations and transmission electron microscopy reveal that the high strength observed in nickel of grain size 3 nanometres is caused by the superposition of strengthening mechanisms: both partial and full dislocation hardening plus suppression of grain boundary plasticity. These insights contribute to the ongoing search for ultrastrong metals via materials engineering.

2.
J Am Chem Soc ; 146(8): 5355-5365, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358943

RESUMO

The twin boundary, a common lattice plane of mirror-symmetric crystals, may have high reactivity due to special atomic coordination. However, twinning platinum and iridium nanocatalysts are grand challenges due to the high stacking fault energies that are nearly 1 order of magnitude larger than those of easy-twinning gold and silver. Here, we demonstrate that Turing structuring, realized by selective etching of superthin metal film, provides 14.3 and 18.9 times increases in twin-boundary densities for platinum and iridium nanonets, comparable to the highly twinned silver nanocatalysts. The Turing configurations with abundant low-coordination atoms contribute to the formation of nanotwins and create a large active surface area. Theoretical calculations reveal that the specific atom arrangement on the twin boundary changes the electronic structure and reduces the energy barrier of water dissociation. The optimal Turing-type platinum nanonets demonstrated excellent hydrogen-evolution-reaction performance with a 25.6 mV overpotential at 10.0 mA·cm-2 and a 14.8-fold increase in mass activity. And the bifunctional Turing iridium catalysts integrated in the water electrolyzer had a mass activity 23.0 times that of commercial iridium catalysts. This work opens a new avenue for nanocrystal twinning as a facile paradigm for designing high-performance nanocatalysts.

3.
J Am Chem Soc ; 144(4): 1700-1708, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041406

RESUMO

The benefits of excess PbI2 on perovskite crystal nucleation and growth are countered by the photoinstability of interfacial PbI2 in perovskite solar cells (PSCs). Here we report a simple chemical polishing strategy to rip PbI2 crystals off the perovskite surface to decouple these two opposing effects. The chemical polishing results in a favorable perovskite surface exhibiting enhanced luminescence, prolonged carrier lifetimes, suppressed ion migration, and better energy level alignment. These desired benefits translate into increased photovoltages and fill factors, leading to high-performance mesostructured formamidinium lead iodide-based PSCs with a champion efficiency of 24.50%. As the interfacial ion migration paths and photodegradation triggers, dominated by PbI2 crystals, were eliminated, the hysteresis of the PSCs was suppressed and the device stability under illumination or humidity stress was significantly improved. Moreover, this new surface polishing strategy can be universally applicable to other typical perovskite compositions.

4.
Inorg Chem ; 60(11): 7857-7864, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015921

RESUMO

Transition metal dichalcogenides (TMDs) have attracted wide attention due to their quasi-two-dimensional layered structure and exotic properties. Plenty of efforts have been done to modulate the interlayer stacking manner for novel states. However, as an equally important element in shaping the unique properties of TMDs, the effect of intralayer interaction is rarely revealed. Here, we report a particular case of pressure-tuned re-arrangement of intralayer atoms in distorted 1T-NbTe2, which was demonstrated to be a new type of structural phase transition in TMDs. The structural transition occurs in the pressure range of 16-20 GPa, resulting in a transformation of Nb atomic arrangement from the trimeric to dimeric structure, accompanied by a dramatic collapse of unit cell volume and lattice parameters. Simultaneously, a charge density wave (CDW) was also found to collapse during the phase transition. The strong increase in the critical fluctuations of CDW induces a significant decline in the electronic correlation and a change of charge carrier type from hole to electron in NbTe2. Our finding reveals a new mechanism of structure evolution and expands the field of pressure-induced phase transition.

5.
Pestic Biochem Physiol ; 164: 115-121, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284116

RESUMO

A series of cinnamic acid derivatives, which contained dithioacetal moiety, were designed and synthesized, and their anti-plant virus activity against Tobacco mosaic virus (TMV) were evaluated. Most target compounds exhibited good anti-plant virus activities. Compound 2y, especially at 500 mg/L concentration, had an excellent activity against TMV, and its curative, protective, and inactivating activities were 62.5%, 61.8%, and 83.5%, respectively. These activity values were significantly superior to those of ribavirin (45.9%, 39.8%, and 70.3%) and xiangcaoliusuobingmi (44.7%, 48.3%, and 71.7%) and comparable to those of ningnanmycin (61.9%, 53.3%, and 85.2%). Compound 2y presented an EC50 value of 50.7 mg/L for inactivating activity against TMV, which was superior to those of ningnanmycin (51.5 mg/L), ribavirin (160.4 mg/L), and xiangcaoliusuobingmi (83.0 mg/L). Through transmission electron microscopy, we found that compound 2y caused a certain degree of damage to TMV particles, which caused them to break and bend. Four conventional hydrogen bonds were formed with amino acid residues GLN34, THR37, ARG90, and ARG46 of TMV coat protein (CP) through molecular docking. Microscale thermophoresis test results showed that compound 2y with TMV CP had a strong binding force, and the dissociation constant (Kd) was 1.6 µM. In summary, the cinnamic acid derivatives containing dithioacetal moiety provide a foundation for further research on antiviral agents.


Assuntos
Antivirais , Vírus do Mosaico do Tabaco , Cinamatos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 29(16): 2218-2223, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257086

RESUMO

The present work designed and synthesized a series of dithioacetal derivatives containing dioxyether, as well as evaluated their antiviral activities against tobacco mosaic virus (TMV). Bioassays demonstrated that the target compounds showed excellent anti-TMV activities in vivo and in vitro. Compound 24c has excellent anti-TMV activities, and its curative, protective and inactivating activities for TMV were 50.9%, 58.9% and 81.8%, respectively, which are obviously superior to those of ribavirin (50.2%, 41.3% and 69.5%, respectively). Moreover, the EC50 of the inactivating activities of the anti-TMV of compound 24c is 67.9 mg/L, which is superior to that of ribavirin (149.5 mg/L). Transmission electron microscopy showed that compound 24c caused great damage to the morphology of TMV particles, causing fracture and bending. Molecule docking model revealed that this compound formed five conventional hydrogen bonds with the active sites of amino acids GLN57, ASN73, TYR139, and SER138. Furthermore, the test results of Fluorescence titration and microscale thermophoresis showed that compound 24c has a strong binding force with TMV coat protein (TMV CP), with an association constant (Ka) of 1.04 × 105 L/mol and dissociation constant (Kd) of 1.6 ±â€¯0.6 µM. These results indicate that the dithioacetal derivatives containing dioxyether are worthy of further research and development as novel antiviral agents.


Assuntos
Éteres/síntese química , Microscopia Eletrônica de Transmissão/métodos , Éteres/química , Estrutura Molecular , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813628

RESUMO

Rice bacterial leaf blight and leaf streak are two important bacterial diseases of rice, which can result in yield loss. Currently, effective antimicrobials for rice bacterial diseases are still lacking. Thus, to develop highly effective and low-risk bactericides, 31 novel 1,3,4-oxadiazole derivatives containing a cinnamic acid moiety were designed and synthesized. Bioassay results demonstrated that all compounds exhibited good antibacterial activities in vitro. Significantly, compounds 5r and 5t showed excellent antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), with the 50% effective concentration (EC50) values of 0.58 and 0.34, and 0.44 and 0.20 µg/mL, respectively. These compounds were much better than thiodiazole copper (123.10 and 161.52 µg/mL) and bismerthiazol (85.66 and 110.96 µg/mL). Moreover, compound 5t had better protective and curative activities against rice bacterial leaf blight and leaf streak than thiodiazole copper and bismerthiazol in vivo. Simultaneously, the in vivo efficacy of the compounds was demonstrated by real-time quantitative PCR to quantify bacterial titers. In addition, a three-dimensional quantitative structure⁻activity relationship model was created and presented good predictive ability. This work provides support for 1,3,4-oxadiazole derivatives containing a cinnamic acid moiety as a potential new bactericide for rice bacterial diseases.


Assuntos
Antibacterianos/farmacologia , Cinamatos/farmacologia , Oryza/microbiologia , Oxidiazóis/farmacologia , Doenças das Plantas/microbiologia , Antibacterianos/química , Cinamatos/química , Fluorescência , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Oxidiazóis/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Relação Quantitativa Estrutura-Atividade , Eletricidade Estática , Xanthomonas/efeitos dos fármacos
9.
Braz J Otorhinolaryngol ; 90(6): 101473, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39111129

RESUMO

OBJECTIVE: To investigate the efficacy of cluster nursing intervention based on Enhanced Recovery After Surgery (ERAS) for xerostomia in chronic rhinosinusitis after nasal endoscopic surgery. METHODS: A total of 80 patients with chronic rhinosinusitis who underwent functional nasal endoscopic surgery between January 2020 and December 2021 were selected and randomly divided into a control group (n = 40) and an experimental group (n = 40). Patients in the control group were treated with general nursing, while ERAS-based cluster nursing intervention was adopted for the experimental group, in addition to general nursing. Xerostomia stage and comfort level were observed at 2 h, 6 h, 24 h and 48 h after surgery; negative emotions before and after nursing were also observed. RESULTS: After the intervention, the xerostomia stage and comfort level at 6, 24 and 48 after surgery were higher in the experimental group (p < 0.05). Negative emotions in the experimental group were lower after nursing (p < 0.001). The self-rating depression scale and self-rating anxiety scale scores increased after nursing in both two groups (p < 0.05). CONCLUSION: Enhanced recovery after surgery-based cluster nursing intervention can alleviate xerostomia, improve patients' comfort levels, reduce their negative emotions and accelerate postoperative recovery.

10.
Nat Commun ; 14(1): 5389, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666814

RESUMO

Low-dimensional nanocrystals with controllable defects or strain modifications are newly emerging active electrocatalysts for hydrogen-energy conversion and utilization; however, a crucial challenge remains in insufficient stability due to spontaneous structural degradation and strain relaxation. Here we report a Turing structuring strategy to activate and stabilize superthin metal nanosheets by incorporating high-density nanotwins. Turing configuration, realized by constrained orientation attachment of nanograins, yields intrinsically stable nanotwin network and straining effects, which synergistically reduce the energy barrier of water dissociation and optimize the hydrogen adsorption free energy for hydrogen evolution reaction. Turing PtNiNb nanocatalyst achieves 23.5 and 3.1 times increase in mass activity and stability index, respectively, compared against commercial 20% Pt/C. The Turing PtNiNb-based anion-exchange-membrane water electrolyser with a low Pt mass loading of 0.05 mg cm-2 demonstrates at least 500 h stability at 1000 mA cm-2, disclosing the stable catalysis. Besides, this new paradigm can be extended to Ir/Pd/Ag-based nanocatalysts, illustrating the universality of Turing-type catalysts.

11.
Light Sci Appl ; 12(1): 177, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482582

RESUMO

Blue perovskite light-emitting diodes (PeLEDs) are essential in pixels of perovskite displays, while their progress lags far behind their red and green counterparts. Here, we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies, which are categorized into compositional engineering, dimensional control, and size confinement, on optimizing microstructures, energy landscapes, and charge behaviors of wide-bandgap perovskite emitters (bandgap >2.5 eV). Moreover, the stability of perovskite blue emitters and related devices is discussed. In the end, we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.

12.
J Agric Food Chem ; 70(20): 6015-6025, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35576166

RESUMO

Currently, there is insufficient viricide to effectively control tomato spotted wilt virus (TSWV). To address this pending issue, a series of thienopyrimidine-containing dithioacetal derivatives were prepared and tested for their anti-TSWV activities. A subsequent three-dimensional quantitative structure-activity relationship was constructed to indicate the development of optimal compound 35. The obtained compound 35 had excellent anti-TSWV curative, protective, and inactivating activities (63.0, 56.6, and 74.1%, respectively), and the EC50 values of protective and inactivating activities of compound 35 were 252.8 and 113.5 mg/L, respectively, better than those of ningnanmycin (284.8 and 144.7 mg/L) and xiangcaoliusuobingmi (624.9 and 300.0 mg/L). In addition, the anti-TSWV activity of compound 35 was associated with defense-related enzyme activities, enhanced photosynthesis, and reduced stress response, thereby enhancing disease resistance.


Assuntos
Tospovirus , Resistência à Doença , Humanos , Doenças das Plantas , Pirimidinas
13.
Membranes (Basel) ; 12(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557149

RESUMO

Extracellular polymeric substances (EPS) are the main causative agents of membrane fouling, and the use of a hybrid membrane bioreactor (HMBR) can mitigate this by reducing the EPS content. Four bench scale sets of HMBRs were used simultaneously to treat domestic wastewater. The effect of sludge retention times (SRT) on membrane fouling in HMBRs and the underlying mechanism were investigated by comparing and analyzing the changes in sludge load, microbial characteristics, EPS distribution characteristics, and transmembrane pressure under different SRTs. Results revealed that, among the four SRTs (10 d, 20 d, 30 d, and 60 d), the best removal rates of chemical oxygen demand and total nitrogen were observed for an SRT of 30 d, with average removal rates of 95.0% and 57.1%, respectively. The best results for ammonia nitrogen and total phosphorus removal were observed at an SRT of 20 d, with average removal rates of 84.3% and 99.5%, respectively. SRT can affect sludge load by altering the biomass, which significantly impacts the microbial communities. The highest microbial diversity was observed at an SRT of 30 d (with a BOD sludge load of 0.0310 kg/kg∙d), with Sphingobacteriales exhibiting the highest relative abundance at 19.6%. At this SRT setting, the microorganisms produced the least amount of soluble EPS and loosely bond EPS by metabolism, 3.41 mg/g and 4.52 mg/g, respectively. Owing to the reduced EPS content, membrane fouling was effectively controlled and the membrane module working cycle was effectively enhanced up to 99 d, the longest duration among the four SRTs.

14.
Artigo em Inglês | MEDLINE | ID: mdl-36016689

RESUMO

In this study, the application value of three-dimensional power Doppler ultrasound (3D-PDU) in fetal growth restriction (FGR) is explored. The retrospective cohort study enrolled pregnant women (with a gestational week of 11-13 + 6 weeks) who received routine health care in the obstetrics and gynecology clinic of our hospital from January 2020 to January 2021. The placentae were scanned using 3D-PDU, and the subjects were followed up until delivery. The fetuses were divided into the control group (n = 322) and FGR group (n = 44) according to their birth weight. There was no significant difference in nuchal translucency (NT), crown-rump length (CRL), and placental volume (PV) during the first trimester between the two groups (P > 0.05). Compared with the control group, the FGR group showed significantly lower levels of vascularisation index (VI), flow index (FI), and vascularisation flow index (VFI) and a higher incidence of fetal distress and neonatal asphyxia (P < 0.05). The FGR group showed a longer gestational week at birth, a higher probability of cesarean section, and a lower 5-minute Apgar score than the control group (P < 0.05). The VI, FI, and VFI of the control group were significantly higher than those of the FGR group. Pearson analysis showed that birth weight was positively correlated with VI and FI (P < 0.05). 3D-PDU assesses the blood perfusion of the fetus and placenta in the first trimester and predicts the pregnancy outcome, which shows great potential in the early diagnosis of FGR.

15.
Materials (Basel) ; 15(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35329452

RESUMO

Temperature and strain rate have significant effects on the mechanical behavior of SiC/Al 2009 composites. This research aimed to precisely model the thermal and strain rate effect on the strain hardening behavior of SiC/Al composite using the artificial neural network (ANN). The mechanical behavior of SiC/Al 2009 composites in the temperature range of 298-623 K under the strain rate of 0.001-0.1 s-1 was investigated by a uniaxial tension experiment. Four conventional models were adopted to characterize the plastic flow behavior in relation to temperature, strain rate, and strain. The ANN model was also applied to characterize the flow behavior of the composite at different strain rates and temperatures. Experimental results showed that the plastic deformation behavior of SiC/Al 2009 composite possesses a coupling effect of strain, strain rate, and temperature. Comparing the prediction error of these models, all four conventional models could not provide satisfactory modeling of flow curves at different strain rates and temperatures. Compared to the four conventional models, the suggested ANN structure dramatically improved the prediction accuracy of the flow curves at different strain rates and temperatures by reducing the prediction error to a maximum of 4.0%. Therefore, the ANN model is recommended for precise modeling of the thermal and strain rate effect on the flow curves of SiC/Al composites.

16.
Materials (Basel) ; 15(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207829

RESUMO

In this paper, considering the strength and geometric discrete distribution characteristics of composite reinforcement, by introducing the discrete distribution function of reinforcement, the secondary development of ABAQUS is realized by using the Python language, the parametric automatic generation method of representative volume elements of particle-reinforced composites is established, and the tensile properties of silicon carbide particle-reinforced aluminum matrix composites are analyzed. The effects of particle strength, particle volume fraction, and particle random distribution on the mechanical properties of SiCp/Al composites are studied. The results show that the random distribution of particles and the change in particle strength have no obvious influence on the stress-strain relationship before the beginning of material damage, but have a great influence on the damage stage, maximum strength, and corresponding failure strain. With the increase in particle volume fraction, the damage intensity of the model increases, and the random distribution of particles has a great influence on the model with a large particle volume fraction. The results can provide a reference for the design, preparation, and characterization of particle-reinforced metal matrix composites.

17.
Materials (Basel) ; 15(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143548

RESUMO

Low-cycle fatigue, creep and creep-fatigue tests of Ti2AlNb-based alloy were carried out at 550 °C. Compared with low-cycle fatigue, a creep-fatigue hysteresis loop has larger area and smaller average stress. The introduction of creep damage will greatly reduce the cycle life, and change the fatigue crack initiation point and failure mechanism. Based on the linear damage accumulation rule, the fatigue damage and creep damage were described by the life fraction method and the time fraction method, respectively, and the creep-fatigue life of the Ti2AlNb-based alloy is predicted within an error band of ±2 times.

18.
J Phys Chem Lett ; 13(24): 5514-5521, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35696320

RESUMO

The TaAs family (NbAs, TaAs, NbP, TaP) are kinds of Weyl semimetals with lots of novel properties, thus attracting considerable attention in recent years. Here, we systematically studied the Weyl semimetal NbP up to 72 GPa through the resistivity, Raman spectra, X-ray diffraction measurements, and first-principles density functional theory (DFT) calculations. A pressure-induced semimetal-metal transition was observed at ∼36 GPa, which was further confirmed by the DFT calculations. With further compression up to 52 GPa, a superconducting state was observed. Interestingly, the Tc increases significantly upon decompression and shows a dome-shaped trend as a function of pressure. Surprisingly, the pressure-induced superconductivity can be quenched to ambient pressure, and all transitions under pressure do not involve any structural change. Our work not only depicts a phase diagram of the NbP system under high pressure but also provides a new experimental insight for superconductivity in Weyl semimetals.

19.
Adv Mater ; 34(6): e2107420, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34845763

RESUMO

A prerequisite for commercializing perovskite photovoltaics is to develop a swift and eco-friendly synthesis route, which guarantees the mass production of halide perovskites in the industry. Herein, a green-solvent-assisted mechanochemical strategy is developed for fast synthesizing a stoichiometric δ-phase formamidinium lead iodide (δ-FAPbI3 ) powder, which serves as a high-purity precursor for perovskite film deposition with low defects. The presynthesized δ-FAPbI3 precursor possesses high concentration of micrometer-sized colloids, which are in favor of preferable crystallization by spontaneous nucleation. The resultant perovskite films own preferred crystal orientations of cubic (100) plane, which is beneficial for superior carrier transport compared to that of the films with isotropic crystal orientations using "mixture of PbI2 and FAI" as precursors. As a result, high-performance perovskite solar cells with a maximum power conversion efficiency of 24.2% are obtained. Moreover, the δ-FAPbI3 powder shows superior storage stability for more than 10 months in ambient environment (40 ± 10% relative humidity), being conducive to a facile and practical storage for further commercialization.

20.
J Vis Exp ; (177)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34866629

RESUMO

The mechanical strengthening of metals is the long-standing challenge and popular topic of materials science in industries and academia. The size dependence of the strength of the nanometals has been attracting a lot of interest. However, characterizing the strength of materials at the lower nanometer scale has been a big challenge because the traditional techniques become no longer effective and reliable, such as nano-indentation, micropillar compression, tensile, etc. The current protocol employs radial diamond-anvil cell (rDAC) X-ray diffraction (XRD) techniques to track differential stress changes and determine the strength of ultrafine metals. It is found that ultrafine nickel particles have more significant yield strength than coarser particles, and the size strengthening of nickel continues down to 3 nm. This vital finding immensely depends on effective and reliable characterizing techniques. The rDAC XRD method is expected to play a significant role in studying and exploring nanomaterial mechanics.


Assuntos
Metais , Nanoestruturas , Diamante , Níquel , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA