Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nature ; 626(8001): 1011-1018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418913

RESUMO

Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.

2.
Proc Natl Acad Sci U S A ; 121(18): e2401060121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648475

RESUMO

Electrochromic (EC) displays with electronically regulating the transmittance of solar radiation offer the opportunity to increase the energy efficiency of the building and electronic products and improve the comfort and lifestyle of people. Despite the unique merit and vast application potential of EC technologies, long-awaited EC windows and related visual content displays have not been fully commercialized due to unsatisfactory production cost, durability, color, and complex fabrication processes. Here we develop a unique EC strategy and system based on the natural host and guest interactions to address the above issues. A completely reusable and sustainable EC device has been fabricated with potential advantages of extremely low cost, ideal user-/environment friendly property, and excellent optical modulation, which is benefited from the extracted biomass EC materials and reusable transparent electrodes involved in the system. The as-prepared EC window and nonemissive transparent display also show comprehensively excellent properties: high transmittance change (>85%), broad spectra modulation covering Ultraviolet (UV), Visible (Vis) to Infrared (IR) ranges, high durability (no attenuation under UV radiation for more than 1.5 mo), low open voltage (0.9 V), excellent reusability (>1,200 cycles) of the device's key components and reversibility (>4,000 cycles) with a large transmittance change, and pleasant multicolor. It is anticipated that unconventional exploration and design principles of dynamic host-guest interactions can provide unique insight into different energy-saving and sustainable optoelectronic applications.

3.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935071

RESUMO

Advances in chromatin mapping have exposed the complex chromatin hierarchical organization in mammals, including topologically associating domains (TADs) and their substructures, yet the functional implications of this hierarchy in gene regulation and disease progression are not fully elucidated. Our study delves into the phenomenon of shared TAD boundaries, which are pivotal in maintaining the hierarchical chromatin structure and regulating gene activity. By integrating high-resolution Hi-C data, chromatin accessibility, and DNA double-strand breaks (DSBs) data from various cell lines, we systematically explore the complex regulatory landscape at high-level TAD boundaries. Our findings indicate that these boundaries are not only key architectural elements but also vibrant hubs, enriched with functionally crucial genes and complex transcription factor binding site-clustered regions. Moreover, they exhibit a pronounced enrichment of DSBs, suggesting a nuanced interplay between transcriptional regulation and genomic stability. Our research provides novel insights into the intricate relationship between the 3D genome structure, gene regulation, and DNA repair mechanisms, highlighting the role of shared TAD boundaries in maintaining genomic integrity and resilience against perturbations. The implications of our findings extend to understanding the complexities of genomic diseases and open new avenues for therapeutic interventions targeting the structural and functional integrity of TAD boundaries.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação da Expressão Gênica , Humanos , Cromatina/metabolismo , Cromatina/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Genômica/métodos , Instabilidade Genômica , Montagem e Desmontagem da Cromatina
4.
Eur J Neurosci ; 59(1): 69-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044718

RESUMO

Although awareness regarding patients with mild traumatic brain injury has increased, they have not received sufficient attention in clinics; hence, many patients still experience only partial recovery. Deficits in decision-making function are frequently experienced by these patients. Accurate identification of impairment in the early stages after brain injury is particularly crucial for timely intervention and the prevention of long-term cognitive consequences. Therefore, we investigated the changes in decision-making ability under tasks of ambiguity and risk in patients with mild traumatic brain injury with a rule-based neuropsychological paradigm. In this study, patients (n = 39) and matched healthy controls (n = 38) completed general neuropsychological background tests and decision-making tasks (Iowa Gambling Task and Game of Dice Task). We found that patients had extensive cognitive impairment in general attention, memory and information processing speed in the subacute phase, and confirmed that patients had different degrees of impairment in decision-making abilities under ambiguity and risk. Furthermore, the decline of memory and executive function may be related to decision-making dysfunction.


Assuntos
Concussão Encefálica , Jogo de Azar , Humanos , Tomada de Decisões , Assunção de Riscos , Jogo de Azar/psicologia , Cognição , Testes Neuropsicológicos
5.
Cell Commun Signal ; 22(1): 114, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347622

RESUMO

Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.


Assuntos
Nefropatias , Sirtuínas , Humanos , Sirtuínas/metabolismo , Nefropatias/tratamento farmacológico , Estresse Oxidativo , Reparo do DNA
6.
Langmuir ; 40(25): 13092-13101, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38872614

RESUMO

Electrode stability can be controlled to a large extent by constructing suitable composite structures, in which the heterojunction structure can affect the transport of electrons and ions through the effect of the interface state, changed band gap width, and the electric field at the interface. As a promising electrode material, the Ga-based material has a conversion between solid and liquid phases in the electrochemical reaction process, which endows it with self-healing properties with the structure and morphology. Based on these, the Ga2O3/MnCO3 composite was successfully synthesized with a heterogeneous structure by introducing a Ga source in the hydrothermal process. Benefitting from the acceleration effect of the internal electric field and the narrower band gap at the interface, a high-capacity Ga2O3/MnCO3 composite electrode (1112 mAh·g-1 after 225 cycles at 0.1 A·g-1 and 457.1 mAh·g-1 after 400 cycles at 1 A·g-1) can be achieved for lithium-ion batteries. The results can provide a reference for the research and preparation of electrode materials with high performance.

7.
Child Dev ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742715

RESUMO

Human brain demonstrates amazing readiness for speech and language learning at birth, but the auditory development preceding such readiness remains unknown. Cochlear implanted (CI) children (n = 67; mean age 2.77 year ± 1.31 SD; 28 females) with prelingual deafness provide a unique opportunity to study this stage. Using functional near-infrared spectroscopy, it was revealed that the brain of CI children was irresponsive to sounds at CI hearing onset. With increasing CI experiences up to 32 months, the brain demonstrated function, region and hemisphere specific development. Most strikingly, the left anterior temporal lobe showed an oscillatory trajectory, changing in opposite phases for speech and noise. The study provides the first longitudinal brain imaging evidence for early auditory development preceding speech acquisition.

8.
Nucleic Acids Res ; 50(D1): D943-D949, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34634795

RESUMO

Emerging infectious diseases significantly threaten global public health and socioeconomic security. The majority of emerging infectious disease outbreaks are caused by zoonotic/vector-borne viruses. Bats and rodents are the two most important reservoir hosts of many zoonotic viruses that can cross species barriers to infect humans, whereas mosquitos and ticks are well-established major vectors of many arboviral diseases. Moreover, some emerging zoonotic diseases require a vector to spread or are intrinsically vector-borne and zoonotically transmitted. In this study, we present a newly upgraded database of zoonotic and vector-borne viruses designated ZOVER (http://www.mgc.ac.cn/ZOVER). It incorporates two previously released databases, DBatVir and DRodVir, for bat- and rodent-associated viruses, respectively, and further collects up-to-date knowledge on mosquito- and tick-associated viruses to establish a comprehensive online resource for zoonotic and vector-borne viruses. Additionally, it integrates a set of online visualization tools for convenient comparative analyses to facilitate the discovery of potential patterns of virome diversity and ecological characteristics between/within different viral hosts/vectors. The ZOVER database will be a valuable resource for virologists, zoologists and epidemiologists to better understand the diversity and dynamics of zoonotic and vector-borne viruses and conduct effective surveillance to monitor potential interspecies spillover for efficient prevention and control of future emerging zoonotic diseases.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Bases de Dados Factuais , Software , Viroses/epidemiologia , Vírus/patogenicidade , Zoonoses/epidemiologia , Animais , Quirópteros/virologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Culicidae/virologia , Conjuntos de Dados como Assunto , Vetores de Doenças/classificação , Monitoramento Epidemiológico , Interações Hospedeiro-Patógeno , Humanos , Internet , Anotação de Sequência Molecular , Roedores/virologia , Carrapatos/virologia , Viroses/transmissão , Viroses/virologia , Vírus/classificação , Vírus/genética , Zoonoses/transmissão , Zoonoses/virologia
9.
Mar Drugs ; 22(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786587

RESUMO

Marine symbiotic and epiphyte microorganisms are sources of bioactive or structurally novel natural products. Metabolic blockade-based genome mining has been proven to be an effective strategy to accelerate the discovery of natural products from both terrestrial and marine microorganisms. Here, the metabolic blockade-based genome mining strategy was applied to the discovery of other metabolites in a sea anemone-associated Streptomyces sp. S1502. We constructed a mutant Streptomyces sp. S1502/Δstp1 that switched to producing the atypical angucyclines WS-5995 A-E, among which WS-5995 E is a new compound. A biosynthetic gene cluster (wsm) of the angucyclines was identified through gene knock-out and heterologous expression studies. The biosynthetic pathways of WS-5995 A-E were proposed, the roles of some tailoring and regulatory genes were investigated, and the biological activities of WS-5995 A-E were evaluated. WS-5995 A has significant anti-Eimeria tenell activity with an IC50 value of 2.21 µM. The production of antibacterial streptopyrroles and anticoccidial WS-5995 A-E may play a protective role in the mutual relationship between Streptomyces sp. S1502 and its host.


Assuntos
Família Multigênica , Anêmonas-do-Mar , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Animais , Antibacterianos/farmacologia , Vias Biossintéticas/genética , Genoma Bacteriano , Produtos Biológicos/farmacologia , Antraquinonas/farmacologia , Anguciclinas e Anguciclinonas
10.
J Adolesc ; 96(5): 1078-1090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38506257

RESUMO

BACKGROUND: It has been demonstrated that self-efficacy and coping styles are related. However, whether there is a reciprocal longitudinal relation between self-efficacy and coping styles needs to be examined. In this longitudinal study, we tested the reciprocal impacts of self-efficacy and coping styles, taking into account the role of future self-continuity (FSC) in these effects. METHODS: The sample included 346 university students in central and southwestern China (48.3% female; Mage = 21.20). Three waves of questionnaire data were collected at half-year intervals. Cross-lagged models were adopted for data analysis. RESULTS: Self-efficacy at Waves 1 and 2 positively predicted positive coping style at Waves 2 and 3, and positive coping style at Waves 1 and 2 positively predicted self-efficacy at Waves 2 and 3. Self-efficacy at Waves 1 and 2 negatively predicted negative coping style at Waves 2 and 3, while negative coping style at Waves 1 and 2 did not significantly predict self-efficacy at Waves 2 and 3. These results indicated the reciprocal causation of self-efficacy and coping styles. Additionally, the mediation analysis revealed that FSC at Wave 2 played a mediating role in the unidirectional association between self-efficacy at Wave 1 and negative coping style at Wave 3. CONCLUSIONS: These findings suggest that self-efficacy and coping style have mutual influences over time partly explained by university students' FSC. Consequently, the results offer potential applied value for promoting positive coping strategies among university students.


Assuntos
Adaptação Psicológica , Autoeficácia , Estudantes , Humanos , Feminino , Masculino , Estudos Longitudinais , Adulto Jovem , China , Estudantes/psicologia , Estudantes/estatística & dados numéricos , Inquéritos e Questionários , Universidades , Adolescente , Adulto
11.
Int J Phytoremediation ; 26(2): 241-249, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37463004

RESUMO

Sedum plumbizincicola is a cadmium (Cd) and zinc hyperaccumulator that can activate Cd by rhizosphere acidification. However, there is little understanding of the Cd leaching risk from polluted soil during phytoextraction process. Here, pot and column experiments were conducted to monitor soil Cd leaching characteristics under different rainfall simulation conditions during S. plumbizincicola phytoextraction. Soil Cd leaching increased significantly with increasing simulated rainfall intensity. Compared with normal rainfall (NR), weak rainfall (WR) resulted in a 34.3% decrease in Cd uptake by S. plumbizincicola and also led to a 68.7% decline in Cd leaching. In contrast, Cd leaching under heavy rainfall (HR) was 2.12 times that of NR in the presence of S. plumbizincicola. After two successive growing periods, phytoextraction resulted in a 53.5-66.4% decline in the amount of soil Cd leached compared with controls in which S. plumbizincicola was absent. Even compared with maize cropping as a control, S. plumbizincicola did not instigate a significant increase in Cd leaching. The contribution of Cd leaching loss to the decline in soil total Cd concentration was negligible after phytoextraction in the pot experiment. Overall, the results contribute to our understanding of soil Cd leaching risk by phytoextraction with S. plumbizincicola.


Repeated phytoextraction by hyperaccumulator Sedum plumbizincicola is an important remediation technology to remove Cd from contaminated soils. At the same time, Sedum plumbizincicola can also activate soil Cd by rhizosphere acidification. However, studies on the leaching risk of soil activated Cd during the phytoextraction process are very few. This study looked at the effects of Sedum plumbizincicola growth on soil Cd leaching with the changes in rainfall simulation and plant type. Results showed that repeated phytoextraction with Sedum plumbizincicola did not increase Cd leaching from contaminated soil.


Assuntos
Sedum , Poluentes do Solo , Cádmio , Poluentes do Solo/análise , Biodegradação Ambiental , Solo
12.
Mol Pharmacol ; 103(6): 325-338, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921922

RESUMO

Allosteric modulation of metabotropic glutamate receptor subtype 1 (mGlu1) represents a viable therapeutic target for treating numerous central nervous system disorders. Although multiple chemically distinct mGlu1 positive (PAMs) and negative (NAMs) allosteric modulators have been identified, drug discovery paradigms have not included rigorous pharmacological analysis. In the present study, we hypothesized that existing mGlu1 allosteric modulators possess unappreciated probe-dependent or biased pharmacology. Using human embryonic kidney 293 (HEK293A) cells stably expressing human mGlu1, we screened mGlu1 PAMs and NAMs from divergent chemical scaffolds for modulation of different mGlu1 orthosteric agonists in intracellular calcium (iCa2+) mobilization and inositol monophosphate (IP1) accumulation assays. Operational models of agonism and allosterism were used to derive estimates for important pharmacological parameters such as affinity, efficacy, and cooperativity. Modulation of glutamate and quisqualate-mediated iCa2+ mobilization revealed probe dependence at the level of affinity and cooperativity for both mGlu1 PAMs and NAMs. We also identified the previously described mGlu5 selective NAM PF-06462894 as an mGlu1 NAM with a different pharmacological profile from other NAMs. Differential profiles were also observed when comparing ligand pharmacology between iCa2+ mobilization and IP1 accumulation. The PAMs Ro67-4853 and CPPHA displayed apparent negative cooperativity for modulation of quisqualate affinity, and the NAMs CPCCOEt and PF-06462894 had a marked reduction in cooperativity with quisqualate in IP1 accumulation and upon extended incubation in iCa2+ mobilization assays. These data highlight the importance of rigorous assessment of mGlu1 modulator pharmacology to inform future drug discovery programs for mGlu1 allosteric modulators. SIGNIFICANCE STATEMENT: Metabotropic glutamate receptor subtype 1 (mGlu1) positive and negative allosteric modulators have therapeutic potential in multiple central nervous system disorders. We show that chemically distinct modulators display differential pharmacology with different orthosteric ligands and across divergent signaling pathways at human mGlu1. Such complexities in allosteric ligand pharmacology should be considered in future mGlu1 allosteric drug discovery programs.


Assuntos
Ácido Glutâmico , Receptor de Glutamato Metabotrópico 5 , Humanos , Receptor de Glutamato Metabotrópico 5/metabolismo , Ligantes , Regulação Alostérica , Ácido Quisquálico , Ácido Glutâmico/metabolismo
13.
J Am Chem Soc ; 145(5): 2958-2967, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706365

RESUMO

Metal-organic frameworks (MOFs) are materials with a high degree of porosity that can be used for many applications. However, the chemical space of MOFs is enormous due to the large variety of possible combinations of building blocks and topology. Discovering the optimal MOFs for specific applications requires an efficient and accurate search over countless potential candidates. Previous high-throughput screening methods using computational simulations like DFT can be time-consuming. Such methods also require the 3D atomic structures of MOFs, which adds one extra step when evaluating hypothetical MOFs. In this work, we propose a structure-agnostic deep learning method based on the Transformer model, named as MOFormer, for property predictions of MOFs. MOFormer takes a text string representation of MOF (MOFid) as input, thus circumventing the need of obtaining the 3D structure of a hypothetical MOF and accelerating the screening process. By comparing to other descriptors such as Stoichiometric-120 and revised autocorrelations, we demonstrate that MOFormer can achieve state-of-the-art structure-agnostic prediction accuracy on all benchmarks. Furthermore, we introduce a self-supervised learning framework that pretrains the MOFormer via maximizing the cross-correlation between its structure-agnostic representations and structure-based representations of the crystal graph convolutional neural network (CGCNN) on >400k publicly available MOF data. Benchmarks show that pretraining improves the prediction accuracy of both models on various downstream prediction tasks. Furthermore, we revealed that MOFormer can be more data-efficient on quantum-chemical property prediction than structure-based CGCNN when training data is limited. Overall, MOFormer provides a novel perspective on efficient MOF property prediction using deep learning.

14.
Langmuir ; 39(10): 3628-3636, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36857165

RESUMO

The Ga2O3 anode has great potential due to its self-healing and high theoretical capacity in lithium-ion batteries. Like anodes with other transition metal oxides, the Ga2O3 anode has the problems of structural change and low electrical conductivity. The electrochemical performance of the Ga2O3 anode still needs to be improved. In this work, we synthesized a Ga2O3 quantum dots@N-doped carbon (Ga2O3-QD@NC) composite by hydrothermal reaction with a carbon source of dopamine hydrochloride, in which Ga2O3 quantum dots were dispersed in the interior of the amorphous carbon. Such a special structure is conducive to the high-speed migration of lithium ions and electrons and effectively inhibits volume expansion and agglomeration. Smaller and more uniform quantum dots facilitate efficient repair of the structure. Due to these advantages, the Ga2O3-QD@NC electrode has great electrochemical performance. The Ga2O3-QD@NC electrode has an initial discharge capacity of 1580 mAh g-1 with a high first Coulombic efficiency of 62.8% and a cycling capacity of 953 mAh g-1 under 0.1 A g-1. It even has a capacity of 460 mAh g-1 at 1 A g-1 after 300 cycles. This strategy can provide a new direction for the Ga2O3 anode in lithium-ion batteries with high capacity.

15.
Cereb Cortex ; 32(23): 5438-5454, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35165693

RESUMO

Unilateral aural stimulation has been shown to cause massive cortical reorganization in brain with congenital deafness, particularly during the sensitive period of brain development. However, it is unclear which side of stimulation provides most advantages for auditory development. The left hemisphere dominance of speech and linguistic processing in normal hearing adult brain has led to the assumption of functional and developmental advantages of right over left implantation, but existing evidence is controversial. To test this assumption and provide evidence for clinical choice, we examined 34 prelingually deaf children with unilateral cochlear implants using near-infrared spectroscopy. While controlling for age of implantation, residual hearing, and dominant hand, cortical processing of speech showed neither developmental progress nor influence of implantation side weeks to months after implant activation. In sharp contrast, for nonspeech (music signal vs. noise) processing, left implantation showed functional advantages over right implantation that were not yet discernable using clinical, questionnaire-based outcome measures. These findings support the notion that the right hemisphere develops earlier and is better preserved from adverse environmental influences than its left counterpart. This study thus provides, to our knowledge, the first evidence for differential influences of left and right auditory peripheral stimulation on early cortical development of the human brain.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Criança , Adulto , Humanos , Implante Coclear/métodos , Estimulação Acústica/métodos , Audição
16.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37655768

RESUMO

Modeling the ion concentration profile in nanochannel plays an important role in understanding the electrical double layer and electro-osmotic flow. Due to the non-negligible surface interaction and the effect of discrete solvent molecules, molecular dynamics (MD) simulation is often used as an essential tool to study the behavior of ions under nanoconfinement. Despite the accuracy of MD simulation in modeling nanoconfinement systems, it is computationally expensive. In this work, we propose neural network to predict ion concentration profiles in nanochannels with different configurations, including channel widths, ion molarity, and ion types. By modeling the ion concentration profile as a probability distribution, our neural network can serve as a much faster surrogate model for MD simulation with high accuracy. We further demonstrate the superior prediction accuracy of neural network over XGBoost. Finally, we demonstrated that neural network is flexible in predicting ion concentration profiles with different bin sizes. Overall, our deep learning model is a fast, flexible, and accurate surrogate model to predict ion concentration profiles in nanoconfinement.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37690599

RESUMO

Insects experience different kinds of environmental stresses that can impair neural performance, leading to spreading depolarization (SD) of nerve cells and neural shutdown underlying coma. SD is associated with a sudden loss of ion, notably K+, homeostasis in the central nervous system. The sensitivity of an insect's nervous system to stress (e.g., anoxia) can be modulated by acute pre-treatment. Rapid cold hardening (RCH) is a form of preconditioning, in which a brief exposure to low temperature can enhance the stress tolerance of insects. We used a pharmacological approach to investigate whether RCH affects anoxia-induced SD in the locust, Locusta migratoria, via one or more of the following homeostatic mechanisms: (1) Na+/K+-ATPase (NKA), (2) Na+/K+/2Cl- co-transporter (NKCC), and (3) voltage-gated K+ (Kv) channels. We also assessed abundance and phosphorylation of NKCC using immunoblotting. We found that inhibition of NKA or Kv channels delayed the onset of anoxia-induced SD in both control and RCH preparations. However, NKCC inhibition preferentially abrogated the effect of RCH. Additionally, we observed a higher abundance of NKCC in RCH preps but no statistical difference in its phosphorylation level, indicating the involvement of NKCC expression or degradation as part of the RCH mechanism.


Assuntos
Sistema Nervoso Central , Locusta migratoria , Animais , Hipóxia , Adenosina Trifosfatases , Temperatura Baixa
18.
Medicina (Kaunas) ; 59(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512126

RESUMO

Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis.


Assuntos
Osso e Ossos , Transdução de Sinais , Animais , Camundongos , Osso e Ossos/metabolismo , Citocinas , NF-kappa B/metabolismo , Osteogênese , Transdução de Sinais/fisiologia , Camundongos Endogâmicos BALB C
19.
Small ; 18(31): e2201602, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35789234

RESUMO

Biofunctionalized nanoparticles are increasingly used in biomedical applications including sensing, targeted delivery, and hyperthermia. However, laser excitation and associated heating of the nanomaterials may alter the structure and interactions of the conjugated biomolecules. Currently no method exists that directly monitors the local temperature near the material's interface where the conjugated biomolecules are. Here, a nanothermometer is reported based on DNA-mediated points accumulation for imaging nanoscale topography (DNA-PAINT) microscopy. The temperature dependent kinetics of repeated and reversible DNA interactions provide a direct readout of the local interfacial temperature. The accuracy and precision of the method is demonstrated by measuring the interfacial temperature of many individual gold nanoparticles in parallel, with a precision of 1 K. In agreement with numerical models, large particle-to-particle differences in the interfacial temperature are found due to underlying differences in optical and thermal properties. In addition, the reversible DNA interactions enable the tracking of interfacial temperature in real-time with intervals of a few minutes. This method does not require prior knowledge of the optical and thermal properties of the sample, and therefore opens the window to understanding and controlling interfacial heating in a wide range of nanomaterials.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Microscopia , Nanoestruturas/química
20.
J Autoimmun ; 129: 102828, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429914

RESUMO

Heterogeneous nuclear ribonucleoproteins (hnRNPs), a family of RNA-binding proteins, play important roles in various biological processes. However, the roles of hnRNPs members in immunity and inflammation remain to be fully understood. By a functional screening for hnRNPs members in LPS-stimulated macrophage inflammatory response, we identified hnRNP UL1 as a negative regulator of NF-κB-mediated inflammation. hnRNP UL1 constrains NF-κB-triggered transcriptional expression of pro-inflammatory cytokines in response to innate stimuli. Perturbation of hnRNP UL1 enhanced pro-inflammatory cytokine production in macrophages. In vivo deficiency of hnRNP UL1 increased the pro-inflammatory cytokine production once challenged with LPS. Accordingly, the expression of hnRNP UL1 decreased in peripheral blood mononuclear cells of rheumatoid arthritis patients. Mechanistically, hnRNP UL1 competes with NF-κB to bind κB sites to constrain the magnitude and duration of inflammatory response. Meanwhile, the broadly and dynamically binding of hnRNP UL1 on the target genes' promoter during inflammatory response is unraveled. Our study adds new insight into the functions of hnRNPs in NF-κB-mediated inflammation, proposing a potential therapeutic strategy for controlling inflammatory autoimmune diseases.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , NF-kappa B , Proteínas Nucleares , Fatores de Transcrição , Citocinas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Inflamação/genética , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA