Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Small ; 20(29): e2309038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38456768

RESUMO

Adoptive cellular therapy is a promising strategy for cancer treatment. However, the effectiveness of this therapy is limited by its intricate and immunosuppressive tumor microenvironment. In this study, a targeted therapeutic strategy for macrophage loading of drugs is presented to enhance anti-tumor efficacy of macrophages. K7M2-target peptide (KTP) is used to modify macrophages to enhance their affinity for tumors. Pexidartinib-loaded ZIF-8 nanoparticles (P@ZIF-8) are loaded into macrophages to synergistically alleviate the immunosuppressive tumor microenvironment synergistically. Thus, the M1 macrophages decorated with KTP carried P@ZIF-8 and are named P@ZIF/M1-KTP. The tumor volumes in the P@ZIF/M1-KTP group are significantly smaller than those in the other groups, indicating that P@ZIF/M1-KTP exhibited enhanced anti-tumor efficacy. Mechanistically, an increased ratio of CD4+ T cells and a decreased ratio of MDSCs in the tumor tissues after treatment with P@ZIF/M1-KTP indicated that it can alleviate the immunosuppressive tumor microenvironment. RNA-seq further confirms the enhanced immune cell function. Consequently, P@ZIF/M1-KTP has great potential as a novel adoptive cellular therapeutic strategy for tumors.


Assuntos
Macrófagos , Células Supressoras Mieloides , Osteossarcoma , Peptídeos , Microambiente Tumoral , Zeolitas , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Osteossarcoma/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/terapia , Microambiente Tumoral/efeitos dos fármacos , Peptídeos/química , Zeolitas/química , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Linhagem Celular Tumoral , Aminopiridinas/química , Aminopiridinas/farmacologia , Nanopartículas/química , Pirróis/química , Pirróis/farmacologia , Terapia de Imunossupressão , Sistemas de Liberação de Medicamentos , Humanos
2.
J Cell Physiol ; 235(2): 1746-1758, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31309562

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, and the pathogenesis of RA is still unknown. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) are of significance in the pathogenesis of RA. In this study, three microarray profiles (GSE55457, GSE55584, and GSE55235) of human joint FLSs from 33 RA patients and 20 normal controls were extracted from the Gene Expression Omnibus Dataset and analyzed to investigate the underlying pathogenesis of RA. As analyzed by the differently expressed genes, gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein-protein interaction network analysis, syndecan-4 (SDC4), a receptor of multiple cytokines and chemokines, which played a key role in the regulation of inflammatory response, was found to be an essential regulator in RA. To further validate these results, the levels of SDC4, reactive oxygen species (ROS), nitric oxide (NO), inflammation, and apoptosis in RA-FLSs were examined. SDC4-silenced RA-FLSs were also used. The results demonstrated that SDC4 and the level of ROS, NO, and inflammation were highly expressed while the apoptosis was decreased in RA-FLSs compared with normal FLSs. SDC4 silencing significantly suppressed the levels of ROS, NO, and inflammation; elevated the expression of nuclear factor erythroid 2-related factor 2; and promoted the apoptosis of RA-FLSs. Collectively, our results demonstrated a new mechanism of SDC4 in initiating the inflammation and inhibiting the apoptosis of RA-FLSs and that a potential target for the diagnosis and treatment of RA in the clinic might be developed.


Assuntos
Apoptose/fisiologia , Artrite Reumatoide/patologia , Inflamação/patologia , Sindecana-4/metabolismo , Sinoviócitos/patologia , Idoso , Artrite Reumatoide/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sinoviócitos/metabolismo
3.
J Cell Biochem ; 121(3): 2643-2654, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31692043

RESUMO

Immune infiltration is reported to be highly associated with tumor progress. Since butyrophilin subfamily 3 member A2 (BTN3A2) serves as a crucial mediator in immune activation, we aimed to investigate the correlation of BTN3A2 in immune infiltration and tumor prognosis via extensive-cancer analysis. The levels of BTN3A2 expression in extensive cancers were analyzed with Oncomine and TIMER databases. Univariate cox and multivariate cox regression analyses were conducted to assess the associations of BTN3A2 to prognosis of various cancers. The correlations of BTN3A2 with immune infiltration were assessed by TIMER database. It suggested that BTN3A2 was a potential prognosis signature for breast cancer (BRCA) and ovarian cancer (OV). However, immune infiltrations were highly correlated with BTN3A2 in triple-negative breast cancer (TNBC), compared with OV and other subtypes of BRCA. Multivariate cox regression analysis revealed that BTN3A2 was an independently prognostic signature of TNBC, as well as weighted correlation network analysis suggested BTN3A2 was only correlated with TNBC, rather than other subtypes of BRCA. Immune cell subtypes correlation analysis showed that BTN3A2 was highly correlated with general T, CD8+ T, T helper type 1, exhausted T cells, and dendritic cells in TNBC. And the coexpression geneset of BTN3A2 was mainly involved in T-cell receptor interaction and the nuclear factor-κB (NF-κB) signaling pathway. Collectively, BTN3A2 that was positively associated with better prognosis could be served as a special diagnostic and independently prognostic marker for TNBC by regulating the T-cell receptor interaction and NF-κB signaling pathways.


Assuntos
Biomarcadores Tumorais/metabolismo , Butirofilinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/patologia , Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Biomarcadores Tumorais/genética , Butirofilinas/genética , Feminino , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Prognóstico , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo
4.
J Nanobiotechnology ; 18(1): 163, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33167997

RESUMO

BACKGROUND: Umbilical cord mesenchymal stem cell (HUCMSC)-based therapies were previously utilised for cartilage regeneration because of the chondrogenic potential of MSCs. However, chondrogenic differentiation of HUCMSCs is limited by the administration of growth factors like TGF-ß that may cause cartilage hypertrophy. It has been reported that extracellular vesicles (EVs) could modulate the phenotypic expression of stem cells. However, the role of human chondrogenic-derived EVs (C-EVs) in chondrogenic differentiation of HUCMSCs has not been reported. RESULTS: We successfully isolated C-EVs from human multi-finger cartilage and found that C-EVs efficiently promoted the proliferation and chondrogenic differentiation of HUCMSCs, evidenced by highly expressed aggrecan (ACAN), COL2A, and SOX-9. Moreover, the expression of the fibrotic marker COL1A and hypertrophic marker COL10 was significantly lower than that induced by TGF-ß. In vivo, C-EVs induced HUCMSCs accelerated the repair of the rabbit model of knee cartilage defect. Furthermore, C-EVs led to an increase in autophagosomes during the process of chondrogenic differentiation, indicating that C-EVs promote cartilage regeneration through the activation of autophagy. CONCLUSIONS: C-EVs play an essential role in fostering chondrogenic differentiation and proliferation of HUCMSCs, which may be beneficial for articular cartilage repair.


Assuntos
Autofagia/fisiologia , Cartilagem/metabolismo , Condrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrogênese , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Coelhos , Cordão Umbilical/citologia
5.
J Nanobiotechnology ; 18(1): 139, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993662

RESUMO

Drug therapy of osteoarthritis (OA) is limited by the short retention and lacking of stimulus-responsiveness after intra-articular (IA) injection. The weak acid microenvironment in joint provides a potential trigger for controlled drug release systems in the treatment of OA. Herein, we developed an pH-responsive metal - organic frameworks (MOFs) system modified by hyaluronic acid (HA) and loaded with an anti-inflammatory protocatechuic acid (PCA), designated as MOF@HA@PCA, for the therapy of OA. Results demonstrated that MOF@HA@PCA could smartly respond to acidic conditions in OA microenvironment and gradually release PCA, which could remarkably reduce synovial inflammation in both IL-1ß induced chondrocytes and the OA joints. MOF@HA@PCA also down-regulated the expression of inflammatory markers of OA and promoted the expression of cartilage-specific makers. This work may provide a new insight for the design of efficient nanoprobes for precision theranostics of OA .


Assuntos
Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Osteoartrite/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/metabolismo , Concentração de Íons de Hidrogênio , Hidroxibenzoatos , Inflamação/tratamento farmacológico , Injeções Intra-Articulares , Interleucina-1beta , Masculino , Osteoartrite/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio
6.
Cell Biochem Funct ; 37(5): 359-367, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31066473

RESUMO

This study aimed to investigate the mechanism of nerve growth factor (NGF) from cobra venom and human transforming growth factor-ß1 (TGF-ß1) on the chondrogenic induction of mesenchymal stem cells (MSCs). NGF and TGF-ß1 were used to induce chondrogenesis of MSCs from rabbits for 7 days. Total RNA was extracted for mRNA sequencing. Differentially expressed genes (DEGs), gene ontology (GO), KEGG pathway enrichment, and PPI network analysis were conducted to screen the specific signalling pathways and target genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to further confirm the relative target genes. The results showed that NGF could significantly promote the expression of hyaline cartilage specific genes (collagen type II alpha 1 chain, COL2A1) compared with TGF-ß1. PI3K-AKT signalling pathway is commonly involved in the chondrogenesis of MSCs induced by NGF and TGF-ß1. However, the expression levels of the genes in the PI3K-AKT signalling pathway were significantly higher in NGF group than that in the TGF-ß1 group. In the process of chondrogenesis of MSCs induced by NGF and TGF-ß1, integrin (ITGAs) were the targeted hub genes to activate the PI3K-AKT signalling pathway. NGF could activate more proliferation and differentiation genes in the process of chondrogenesis of MSCs than TGF-ß1. TGF-ß1 promoted angiogenesis by targeting the thrombospondin (THBS1) and THBS2 which might contribute to the osteophyte formation. PI3K-AKT was the crucial signalling pathway for chondrogenic differentiation. NGF could activate the PI3K-AKT signalling pathway to a higher level, and NGF had more specificity for promoting expression of specific genes of chondrocyte compared with TGF-ß1. SIGNIFICANCE OF THE STUDY: In our study, we compared two different growth factors in promoting cartilage differentiation of MSCs and found some similarities and differences. We revealed that both NGF and TGF-ß1 could activate the PI3K-AKT signalling pathway (the expression of it in NGF was higher) by targeting the ITGAs in the process of chondrogenesis from MSCs. However, NGF could activate more proliferation and differentiation genes in the process of chondrogenesis of MSCs, whereas TGF-ß1 caused osteophyte formation by activating THBS1 and THBS2. These might be the reason why NGF could promote cartilage differentiation more specifically.


Assuntos
Diferenciação Celular , Condrogênese , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Condrogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Coelhos
7.
Bioact Mater ; 40: 460-473, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39036347

RESUMO

Bioactive glasses (BG) play a vital role in angiogenesis and osteogenesis through releasing functional ions. However, the rapid ion release in the early stage will cause excessive accumulation of metal ions, which in turn leads to obvious cytotoxicity, long-term inflammation, and bone repair failure. Inspired by the vibration exciter, small extracellular vesicles (sEVs) obtained by treating mesenchymal stem cells with copper-doped bioactive glass (CuBG-sEVs), is prepared as a nano-vibration exciter. The nano-vibration exciter can convert the ion signals of CuBG into biochemical factor signals through hypoxia-inducible factor 1 (HIF-1) signaling pathway and its activated autophagy, so as to better exert the osteogenic activity of BG. The results showed that CuBG extracts could significantly improve the enrichment of key miRNAs and increase the yield of CuBG-sEVs by activating HIF-1 signaling pathway and its activated autophagy. Cell experiments showed that CuBG-sEVs are favor to cell recruitment, vascularization and osteogenesis as the enrichment of key miRNAs. The animal experiments results showed that CuBG-sEVs stimulated angiogenesis mediated by CD31 and promoted bone regeneration by activating signaling pathways related to osteogenesis. These findings underscored the significant potential of sEVs as alternative strategies to better roles of BG.

8.
Biomater Adv ; 160: 213864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642519

RESUMO

Although calcium phosphate has been extensively utilized in orthopedic applications such as spine, limbs, dentistry, and maxillofacial surgery, the lack of osteoinductive properties often hinders its effectiveness in treating bone defects resulting from pathological micro-environment such as tumor surgery, osteoporosis, osteomyelitis, and diabetic. Therefore, a novel bone cement based on magnesium-doped bioactive glass was developed in this study. The moderate release of magnesium ions improved the mechanical properties by controlling the crystal size of hydroxyapatite. Through detailed discussion of element content and heat treatment temperature, it was found that 2Mg-BG-800 was suitable for the construction of bone cement. 2Mg-BG-BC exhibited favorable initial (15 min) and final (30 min) setting time, compressive strength (29.45 MPa), compressive modulus (1851.49 MPa), injectability, and shape-adaptability. Furthermore, Mg-BG-BC demonstrated the ability to enhance the osteogenic differentiation of BMSCs, and induce macrophage polarization towards the M2 phenotype, suggesting its potential for osteoporotic fracture regeneration.


Assuntos
Cimentos Ósseos , Vidro , Magnésio , Osteogênese , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Vidro/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Força Compressiva
9.
Adv Healthc Mater ; : e2400958, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770831

RESUMO

The integration of hemostats with cotton fabrics is recognized as an effective approach to improve the hemostatic performance of dressings. However, concerns regarding the uncontrollable absorption of blood by hydrophilic dressings and the risk of distal thrombosis from shed hemostatic agents are increasingly scrutinized. To address these issues, this work develops an advanced dressing (AQG) with immobilized nano-scale mesoporous bioactive glass (MBG) to safely and durably augment hemostasis. The doubly immobilized MBGs, pre-coated with ε-poly-L-lysine and alginate, demonstrate less than 1% detachment after ultrasonic washing. Notably, this MBG layer significantly promotes the adhesion, aggregation, and activation of red blood cells and platelets, adhered five times more red blood cells and 29 times more platelets than raw dressing, respectively. Specially, with the rapid formation of protein corona and amplification of thrombin, dense fibrin network is built on MBG layer and then blocked blood permeation transversely and longitudinally, showing an autophobic pseudo-dewetting behavior and allowing AQG to concentrate blood in situ and culminate in faster hemostasis with lower blood loss. Furthermore, the potent antibacterial properties of AQG extend its potential for broader application in daily care and clinical setting.

10.
Mater Horiz ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189308

RESUMO

Cell condensation, linking the migration and chondrogenic differentiation of MSCs, plays a crucial role in cartilage development. Current cartilage repair strategies are inadequately concerned with this process, leading to a suboptimal quality of regenerated cartilage. Inspired by the "nest flocks" structure of Social Weavers, a degradable heterogeneous microgel assembly (F/S-MA) is developed, which can release SDF-1, to form a "micro-nest group" structure and bond with HAV peptides to promote cell recruitment, condensation and chondrogenic differentiation. First, slow-degrading microgels (S-microgels) grafted with HAV peptides and fast-degrading microgels (F-microgels) loaded with SDF-1 are fabricated by an amidation reaction and Schiff base reaction, respectively. They employ sulfhydryl-modified gelatin as assembling agents to form F/S-MA through a thiol-ene reaction, exhibiting injectability, tissue adhesion, and microporosity. F-microgels undergo rapid degradation, leading to the release of SDF-1 and the formation of a "micro-nest group" in F/S-MA. Consequently, F/S-MA exhibits cell recruitment ability, meanwhile facilitating BMSC condensation through the synergistic effects of the "micro-nest group" and HAV peptides. In vitro experiments prove that F/S-MA enhances the expression of cell-condensation-related markers, ultimately upregulating the secretion of cartilage matrix. Animal experiments show that F/S-MA optimizes the quality of regenerated cartilage by improving cell recruitment and condensation. F/S-MA enhances cell condensation through structural and component design, which will provide new insights for cartilage regeneration.

11.
Front Nutr ; 11: 1371077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966424

RESUMO

Objectives: Our study tries to investigate the effect of the Mediterranean diet (MeDiet) on assisted reproductive treatment outcomes in women after COVID-19 infection. Design: A prospective observational cohort study in the Reproductive and Genetic Hospital of CITIC-Xiangya from February 2023 to August 2023.Subjects: A total of 605 participants previously infected with COVID-19 were enrolled. Exposure: None. Main outcome measurement: The primary outcomes are oocyte and embryo quality. The secondary outcomes are pregnancy outcomes. Results: A majority of participants (n = 517) followed low to moderate MeDiet, and only a small group of them (n = 88) followed high MeDiet. The blastocyst formation rate is significantly higher in MeDiet scored 8-14 points women (46.08%), compared to the other two groups (which is 41.75% in the low adherence population and 40.07% in the moderate adherence population respectively) (p = 0.044). However, the follicle number on hCG day, yield oocytes, normal fertilized zygotes, fertilization rate, day three embryos (cleavage embryos), and embryo quality are comparable among the three groups. For those who received embryo transfer, we noticed an obvious trend that with the higher MeDiet score, the higher clinical pregnancy rate (62.37% vs. 76.09% vs. 81.25%, p = 0.197), implantation rate (55.84% vs. 66.44% vs. 69.23%, p = 0.240) and ongoing pregnancy rate (61.22% vs. 75.00% vs. 81.25%, p = 0.152) even though the p values are not significant. An enlarging sample size study, especially in a high adherence population should be designed to further verify the effects of MeDiet's role in improving IVF performance. Conclusion: High adherence to MeDiet is associated with improved blastocyst formation in women after COVID-19 infection. There is also a trend that high adherence to MeDiet might be beneficial to clinical pregnancy, embryo implantation as well as ongoing pregnancy in these women.

12.
Carbohydr Polym ; 299: 120180, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876795

RESUMO

Oxidative stress and inflammation are common pathological mechanisms for the progression of tissue degeneration. Epigallocatechin-3-gallate (EGCG) features antioxidant and anti-inflammatory properties, which is a promising drug for the treatment of tissue degeneration. Herein, we utilize the phenylborate ester reaction of EGCG and phenylboronic acid (PBA) to fabricate an injectable and tissue adhesive EGCG-laden hydrogel depot (EGCG HYPOT), which can achieve anti-inflammatory and antioxidative effects via smart delivery of EGCG. Specifically, the phenylborate ester bonds, formed by EGCG and PBA-modified methacrylated hyaluronic acid (HAMA-PBA), endow EGCG HYPOT injectability, shape adaptation and efficient load of EGCG. After photo-crosslinking, EGCG HYPOT exhibits good mechanical properties, tissue adhesion and sustained acid-responsive release of EGCG. EGCG HYPOT can scavenge oxygen and nitrogen free radicals. Meanwhile, EGCG HYPOT can scavenge intracellular reactive oxygen species (ROS) and suppress the expression of pro-inflammatory factors. EGCG HYPOT may provide a new idea for alleviation of inflammatory disturbance.


Assuntos
Ácido Hialurônico , Adesivos Teciduais , Humanos , Hidrogéis , Inflamação , Estresse Oxidativo , Antioxidantes , Ésteres
13.
Adv Healthc Mater ; 12(29): e2302073, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589595

RESUMO

The treatment for diabetic ulcers still remains a big clinic challenge owing to the adverse repair microenvironment. Bioactive glasses (BGs) play an important role in the late stages of healing due to their ability to promote vascularization and collagen fiber deposition, but fail to improve infection and oxidative stress in the early stage.Therefore, it is critical to develop a material involved in regulating the whole healing phases. In this work, BGs-based nanozymes (MnO2 @PDA-BGs) with antioxidation, antibacterial and pro-healing abilities are synthesized by the redox deposition of MnO2 on mesoporous BGs. Afterward, cryogel with the interconnected macropore structure is fabricated by the polymerization of methacrylate anhydride gelatin (GelMA) at -20 °C. MnO2 @PDA-BGs are loaded into the cryogel to obtain nanocomposite cryogel (MnO2 @PDA-BGs/Gel) with multiple enzymes-like- activities to eliminate reactive oxygen species (ROS). Besides, MnO2 @PDA-BGs/Gel has intensive peroxidase-like activity under acidic condition and near infrared photothermal responsiveness to achieve excellent antibacterial performance. Cells experiments demonstrate that MnO2 @PDA-BGs/Gel recruits L929s and promotes their proliferation. Furthermore, MnO2 @PDA-BGs/Gel eliminates intracellular overexpressed ROS and maintains the viability of L929s. Animal experiments confirm that MnO2 @PDA-BGs/Gel promotes wound healing and avoided scarring by killing bacteria, reversing inflammation, promoting vascularization, and improving the deposition of collagen III.


Assuntos
Antioxidantes , Diabetes Mellitus , Animais , Antioxidantes/farmacologia , Criogéis/farmacologia , Compostos de Manganês , Espécies Reativas de Oxigênio , Óxidos , Antibacterianos/farmacologia , Colágeno
14.
Biomater Sci ; 11(10): 3629-3644, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37010367

RESUMO

Overactive inflammatory cascade accompanied by oxidative stress in the nucleus pulposus exacerbates intervertebral disc degeneration (IVDD). Hydrogels have been demonstrated to be promising in treating IVDD, yet they remain less efficacious in the case of anti-inflammation associated with antioxidation. In this study, we designed an injectable self-antioxidant hydrogel (HA/CS) with enhanced inflammation inhibitory performance for delivering chondroitin sulfate (CS) with well-documented anti-inflammatory property to treat IVDD. The hydrogel was rapidly formed via dynamic boronate ester bonding between furan/phenylboronic acid and furan/dopamine-modified hyaluronic acid (HA), and mechanically enhanced by Diels-Alder reaction-induced secondary crosslinking, partial dopamine groups of which contribute to grafting phenylboronic acid-modified CS (CS-PBA). This hydrogel exhibits favorable injectability, mechanical property, and pH-responsive delivery behavior. The dopamine moiety endows the hydrogel with efficient antioxidative property. By sustained delivery of CS, the HA/CS hydrogel is well competent to inhibit inflammatory cytokine expression and maintain anabolic/catabolic balance in an inflammation-simulated environment. Most importantly, the HA/CS hydrogel significantly ameliorates degeneration in a puncture-induced IVDD rat model. The self-antioxidant HA/CS hydrogel designed in this work may serve as a novel and promising therapeutic platform for IVDD.


Assuntos
Degeneração do Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sulfatos de Condroitina , Dopamina/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácido Hialurônico/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Furanos/metabolismo
15.
J Orthop Translat ; 42: 73-81, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664079

RESUMO

Rotator cuff tendinopathy is a common musculoskeletal disorder that imposes significant health and economic burden. Stem cell therapy has brought hope for tendon healing in patients with final stage rotator cuff tendinopathy. Some clinical trials have confirmed the effectiveness of stem cell therapy for rotator cuff tendinopathy, but its application has not been promoted and approved. There are still many issues that should be solved prior to using stem cell therapy in clinical applications. The optimal source and dose of stem cells for rotator cuff tendinopathy should be determined. We also proposed novel prospective approaches that can overcome cell population heterogeneity and standardize patient types for stem cell applications. The translational potential of this article: This review explores the optimal sources of stem cells for rotator cuff tendinopathy and the principles for selecting stem cell dosages. Key strategies are provided for stem cell population standardization and recipient selection.

16.
J Orthop Translat ; 42: 43-56, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37637777

RESUMO

Background: Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods: We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results: For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions: The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article: The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.

17.
Front Bioeng Biotechnol ; 10: 859442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573245

RESUMO

Electrospinning technology is widely used in the field of drug delivery due to its advantages of convenience, high efficiency, and low cost. To investigate the therapeutic effect of naringenin (Nar) on osteoarthritis (OA), the pH-responsive system of the polycaprolactone/polyethylene glycol-naringenin (PCL/PEG-Nar) nanofiber membrane was designed and used as drug delivery systems (DDS) in the treatment of OA. The PEG-Nar conjugate was constructed via ester linkage between mPEG-COOH and the carboxyl group of naringenin, and the PCL/PEG-Nar nanofiber membrane was prepared by electrospinning technology. When placed in the weak acid OA microenvironment, the PCL/PEG-Nar nanofiber membrane can be cleverly "turned on" to continuously release Nar with anti-inflammatory effect to alleviate the severity of OA. In this study, the construction and the application of the pH-responsive PCL/PEG-Nar nanofiber membrane drug delivery platform would throw new light on OA treatment.

18.
Interact Cardiovasc Thorac Surg ; 34(2): 307-314, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34542589

RESUMO

OBJECTIVES: The aim of this study was to characterize the anatomy of aortopulmonary collateral (APC) arteries in tetralogy of Fallot and pulmonary stenosis and to determine whether APC density identified on preoperative multidetector cardiac computed tomography predicts in-hospital outcome. METHODS: The retrospective single-centre study includes consecutive 135 (2015-2019) patients who underwent one-stage repair. Preoperative multidetector cardiac computed tomography, echocardiography and clinical outcomes were reviewed. The cut-off value of indexed total distal APC cross-sectional area (APC-CSA) was identified by receiver operating characteristic curve. Logistic regression was used for predictors analysis. RESULTS: The median age and body weight were 19.7 (10.1-89.7) months and 10 (8.3-18) kg. A total of 337 APCs were detected with only one demonstrating severe stenosis. There was a strong and significant correlation between mean APC diameter per patient and age (r = 0.70, P < 0.001). APCs were imaged but mainly received no interventions. In-hospital mortality was similar between patients with high (indexed APC-CSA ≥3.0 mm2/m2) and low (<3.0 mm2/m2) APC density (P = 0.642). Significantly greater patients with high indexed APC-CSA experienced the in-hospital composite outcome of death, arrest, renal/hepatic injury, lactic acidosis or extracorporeal membrane oxygenation (P = 0.007). High APC density was associated with greater dosing (P = 0.008) and longer (P = 0.01) use of inotropic support, prolonged pleural drainage (P = 0.013), longer ventilation (P = 0.042), intensive care unit (P = 0.014) and hospital (P = 0.027) duration. No reintervention and death occurred in the follow-up with the median duration of 24.4 (11-36.6) months. Multivariable analysis showed the Nakata index (P = 0.05) and high APC density (P = 0.02) independently predicted the composite outcome. CONCLUSIONS: In tetralogy of Fallot and pulmonary stenosis, APCs are likely to be dilated bronchial arteries. Preoperative multidetector cardiac computed tomography-derived APC density was as important as Nakata index in predicting the occurrence of in-hospital composite outcome. The APC-CSA of 3.0 mm2/m2 maybe considered as a threshold for risk stratification.


Assuntos
Estenose da Valva Pulmonar , Tetralogia de Fallot , Hospitais , Humanos , Lactente , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/cirurgia , Estudos Retrospectivos , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Resultado do Tratamento
19.
ACS Appl Mater Interfaces ; 14(13): 15653-15666, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35344348

RESUMO

Extrusion bioprinting has been widely used to fabricate complicated and heterogeneous constructs for tissue engineering and regenerative medicine. Despite the remarkable progress acquired so far, the exploration of qualified bioinks is still challenging, mainly due to the conflicting requirements on the printability/shape-fidelity and cell viability. Herein, a new strategy is proposed to formulate a dynamic cross-linked microgel assembly (DC-MA) bioink, which can achieve both high printability/shape-fidelity and high cell viability by strengthening intermicrogel interactions through dynamic covalent bonds while still maintaining the relatively low mechanical modulus of microgels. As a proof-of-concept, microgels are prepared by cross-linking hyaluronic acid modified with methacrylate and phenylboric acid groups (HAMA-PBA) and methacrylated gelatin (GelMA) via droplet-based microfluidics, followed by assembling into DC-MA bioink with a dynamic cross-linker (dopamine-modified hyaluronic acid, HA-DA). As a result, 2D and 3D constructs with high shape-fidelity can be printed without post-treatment, and the encapsulated L929 cells exhibit high cell viability after extrusion. Moreover, the addition of the dynamic cross-linker (HA-DA) also improves the microporosity, tissue-adhesion, and self-healing of the DC-MA bioink, which is very beneficial for tissue engineering and regenerative medicine applications including wound healing. We believe the present work sheds a new light on designing new bioinks for extrusion bioprinting.


Assuntos
Bioimpressão , Microgéis , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
20.
Front Aging Neurosci ; 14: 945964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072485

RESUMO

Background: The retina and brain share a similar embryologic origin, blood barriers, and microvasculature features. Thus, retinal imaging has been of interest in the aging population to help in the early detection of brain disorders. Imaging evaluation of brain frailty, including brain atrophy and markers of cerebral small vessel disease (CSVD), could reflect brain health in normal aging, but is costly and time-consuming. In this study, we aimed to evaluate the retinal microvasculature and its association with radiological indicators of brain frailty in normal aging adults. Methods: Swept-source optical coherence tomography angiography (SS-OCTA) and 3T-MRI brain scanning were performed on normal aging adults (aged ≥ 50 years). Using a deep learning algorithm, microvascular tortuosity (VT) and fractal dimension parameter (Dbox) were used to evaluate the superficial vascular complex (SVC) and deep vascular complex (DVC) of the retina. MRI markers of brain frailty include brain volumetric measures and CSVD markers that were assessed. Results: Of the 139 normal aging individuals included, the mean age was 59.43 ± 7.31 years, and 64.0% (n = 89) of the participants were females. After adjustment of age, sex, and vascular risk factors, Dbox in the DVC showed a significant association with the presence of lacunes (ß = 0.58, p = 0.007), while VT in the SVC significantly correlated with the score of cerebral deep white matter hyperintensity (ß = 0.31, p = 0.027). No correlations were found between brain volumes and retinal microvasculature changes (P > 0.05). Conclusion: Our report suggests that imaging of the retinal microvasculature may give clues to brain frailty in the aging population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA