Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Chromatogr ; 38(4): e5832, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317273

RESUMO

Shensong Yangxin capsule (SSYXC), an effective Chinese patent medicine, has been recorded in the Chinese Pharmacopeia, mainly for the treatment of coronary heart disease and ventricular premature beat. To further complete the quality evaluation of SSYXC, a comprehensive analysis strategy was established. Firstly, the components of SSYXC were qualitatively analysed using ultra-high- performance liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. A total of 134 compounds were identified or tentatively characterized. Additionally, the fingerprint of SSYXC was established by HPLC, and the similarity of 10 batches of SSYXC was elucidated by similarity analysis. The result indicated that the consistency of chemical composition is good. Finally, to enhance the quality control of SSYXC, according to the results of the fingerprint analysis, the contents of the seven active components was determined, comprising morroniside, loganin, paeoniflorin, salvianolic acid B, palmatine hydrochloride, berberine hydrochloride and tanshinone IIA. In conclusion, the established method, comprising identification of components, fingerprint analysis and quantification of multicomponents, can be sensitively and comprehensively applied to the quality evaluation of SSYXC, which can provide chemical ingredients bases for quality control and the pharmacodynamic mechanism of SSYXC, which could serve as a benchmark for controlling the quality of other Chinese patent medicines.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Humanos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Controle de Qualidade , Medicamentos sem Prescrição
2.
Phytochem Anal ; 35(4): 840-859, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332540

RESUMO

INTRODUCTION: Changan powder (CAP) is mainly used to treat various intestinal diseases. Few studies on CAP have been reported; therefore, it is necessary to clarify the material basis of CAP to lay the foundation for further elucidating its functional mechanism and support the rational use of drugs. OBJECTIVES: In the present study, we aimed to propose a methodology for the quality control of CAP based on qualitative and quantitative analysis of its components. METHODS: An ultra-performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UPLC-FT-ICR-MS) method was developed to identify chemical components in CAP. In addition, fingerprints of 10 different batches of CAP were established, and quantitative analysis based on UPLC was performed to analyze the quality of CAP. RESULTS: A total of 58 compounds were preliminarily characterized. The similarity of 10 batches of CAP was greater than 0.995, and 23 common peaks were calibrated. Investigation of the quantitative analytical methodology showed that the four components had good linear relationships within their respective concentration ranges (r2 ≥ 0.9992), and the relative standard deviation (RSD) of precision and stability was less than 2%. The RSD of sample recovery ranged from 0.78% to 1.52%. CONCLUSION: The established method can quickly and effectively identify the chemical components of CAP and accurately quantify the known components in CAP. The established fingerprinting and content determination method is stable, reliable, and easy to operate and can be applied in quality control and in vivo research on CAP.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas , Pós , Controle de Qualidade , Pós/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos , Análise de Fourier
3.
J Pharm Biomed Anal ; 247: 116265, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38850849

RESUMO

Dingchuan Decoction (DCD) is a traditional Chinese medicine prescription commonly used in the treatment of asthma, but the mechanism of DCD in treating asthma has not yet been determined. In this study, we employed a combination of metabolomics and network pharmacology to investigate the mechanism of DCD in treating asthma. An allergic asthma rat model was induced by ovalbumin (OVA). Metabolomics based on 1H NMR and UHPLC-MS was used to identify differential metabolites and obtain the major metabolic pathways and potential targets. Network pharmacology was utilized to explore potential targets of DCD for asthma treatment. Finally, the results of metabolomics and network pharmacology were integrated to obtain the key targets and metabolic pathways of DCD for the therapy of asthma, and molecular docking was utilized to validate the key targets. A total of 76 important metabolites and 231 potential targets were identified through metabolomics. Using network pharmacology, 184 potential therapeutic targets were obtained. These 184 targets were overlaid with the 231 potential targets obtained through metabolomics and were analyzed in conjunction with metabolic pathways. Ultimately, the key targets were identified as aldehyde dehydrogenase 2 (ALDH2) and amine oxidase copper-containing 3 (AOC3), and the relevant metabolic pathways affected were glycolysis and gluconeogenesis as well as arginine and proline metabolism. Molecular docking showed that the key targets had high affinity with the relevant active ingredients in DCD, which further demonstrated that DCD may exert therapeutic effects by acting on the key targets. The present study demonstrated that DCD can alleviate OVA-induced allergic asthma and that DCD may have a therapeutic effect by regulating intestinal flora and polyamine metabolism through its effects on ALDH2 and AOC3.


Assuntos
Asma , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Metabolômica , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ovalbumina , Ratos Sprague-Dawley , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Metabolômica/métodos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Farmacologia em Rede/métodos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Aldeído-Desidrogenase Mitocondrial/metabolismo , Medicina Tradicional Chinesa/métodos
4.
Int J Biol Macromol ; 242(Pt 2): 124854, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182617

RESUMO

Phellinus linteus polysaccharide (PLP) had received increasing attention due to its multiple biological activities. Herein, the extraction, characterization and in vitro fermentation of PLP were studied to explore its physiochemical properties and the interaction mechanism between the gut microbiota and PLP. The results obtained demonstrated that PLP was mainly composed of 9 monosaccharides, with three gel chromatographic peaks and molecular weights (Mw) of 308.45 kDa, 13.58 kD and 3.33 kDa, respectively. After 48 h fermentation, the Mw, total sugar, reducing sugar, pH and monosaccharides composition were decreased. Furthermore, PLP regulated the composition of gut microbiota, such as promoting the proliferation of beneficial bacteria such as Bacteroides, Prevotella and Butyricimonas, while preventing the growth of pathogenic bacteria such as Escherichia-Shigella, Morganella and Intestinimonas. Gut microbiota metabolites regulated by PLP such as short-chain fatty acids were the main regulators that impact the host health. Bioinformatics analysis indicated that butyrate, bile acid and purine metabolism were the main metabolic pathways of PLP regulating host health, and the Bacteroides was the key genus to regulate these metabolic pathways. In conclusion, our finding suggested that PLP may be used as a prebiotic agent for human health because of its ability to regulate gut microbiota.


Assuntos
Microbiota , Prebióticos , Humanos , Fermentação , Polissacarídeos/química , Ácidos Graxos Voláteis/metabolismo , Açúcares , Monossacarídeos , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA