RESUMO
N6-methyladenosine (m6A), a vital post-transcriptional regulator, is among the most prevalent RNA modifications in eukaryotes. Nevertheless, the biological functions of m6A in oomycetes remain poorly understood. Here, we showed that the PsMTA1 and PsMTA2 genes are orthologs of human METTL4, while the PsMET16 gene is an ortholog of human METTL16. These genes are implicated in m6A modification and play a critical role in the production of sporangia and oospores, the release of zoospores, and the virulence of Phytophthora sojae. In P. sojae, m6A modifications are predominantly enriched in the coding sequence and the 3' untranslated region. Notably, the PsMTA1 knockout mutant exhibited reduced virulence, attributed to impaired tolerance to host defense-generated ROS stress. Mechanistically, PsMTA1-mediated m6A modification positively regulates the mRNA lifespan of DNA damage response (DDR) genes in reaction to plant ROS stress during infection. Consequently, the mRNA abundance of the DDR gene PsRCC1 was reduced in the single m6A site mutant ΔRCC1/RCC1A2961C, resulting in compromised DNA damage repair and reduced ROS adaptation-associated virulence in P. sojae. Overall, these results indicate that m6A-mediated RNA metabolism is associated with the development and pathogenicity of P. sojae, underscoring the roles of epigenetic markers in the adaptive flexibility of Phytophthora during infection.
Assuntos
Adenosina , Dano ao DNA , Reparo do DNA , Phytophthora , Doenças das Plantas , Phytophthora/genética , Phytophthora/patogenicidade , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças das Plantas/microbiologia , Estresse Oxidativo , Virulência/genética , Processamento Pós-Transcricional do RNA , Metilação de RNARESUMO
Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.
Assuntos
MicroRNAs , Phytophthora , RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosforilação , MicroRNAs/metabolismo , MicroRNAs/genética , Phytophthora/patogenicidade , Phytophthora/genética , Phytophthora/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genéticaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
We established a normal embryonic development table for the Anji salamander Hynobius amjiensis, a critically endangered tailed amphibian of the family Hynobiidae with a very limited distribution in East China, following the standards set by the early developmental table of vertebrates. Put together 32 embryonic stages for the Anji salamander was defined. The total embryonic period from oviposition to hatching is approximately 30 days at 9 °C. Stages 1-16 represent early development from cleavage to neurulation. Stages 17-32 represent organogenesis documenting later developmental events such as tail, gill, and limb formation, and hatching (Stage 32). We provided a detailed description of the external morphology and color changes of the head, trunk, limbs, tail, external gills, and balancers at various stages from egg-laying to hatching. We also described several cases of abnormal embryonic development. The establishment of the embryonic development table in H. amjiensis contributes to better understanding of the ontogeny in tailed amphibians, distinguishing closely related species, and identifying abnormal embryonic amphibians.
Assuntos
Embrião não Mamífero , Desenvolvimento Embrionário , Urodelos , Animais , Urodelos/embriologia , Desenvolvimento Embrionário/fisiologia , Embrião não Mamífero/embriologia , Feminino , Organogênese/fisiologia , Cauda/embriologia , ChinaRESUMO
In the search for sustainable cathode materials for aqueous zinc ion batteries (AZIBs), vanadium (V)-based materials have garnered interest, primarily due to their abundance and multiple oxidation states. Among the contenders, Li3 VO4 (LiVO) stands out for its affordability, high specific capacity, and elevated ionic conductivity. However, its limited electrical conductivity results in significant resistance polarization, limiting its rate capability, especially under high currents. Through density functional theory (DFT) calculations, this study evaluates the electrochemical implications of carbon (C) incorporation within the LiVO matrix. The findings indicate that C integration significantly ameliorates the conductivity of LiVO. Moreover, C serves as a barrier, mitigating direct interactions between Zn2+ and LiVO, which in turn expedites Zn2+ diffusion. When considering various C materials for this role, glucose is emerged as the optimal candidate. The LiVO/C-glucose composite (LiVO/C-G) is observed to undergo dual phase transitions during charge-discharge cycles, resulting in an amorphous vanadium-oxygen (VO) derivative, paving the way for subsequent electrochemical reactions. Collectively, the insights pave a promising avenue for refining AZIB cathode design and performance.
RESUMO
This study combines experimental methods with density flooding theory (DFT) calculations to investigate the enhancement of the electrochemical performance of vanadium oxide cathodes for aqueous zinc ion batteries (AZIBs) through strategic water content management. DFT predictions indicated that a moderate presence of structural water optimizes electrical conductivity and facilitates zinc ion diffusion. These theoretical insights are empirically validated by synthesizing AlVO-1.6 H2O using a hydrothermal method, which exhibited superior electrochemical properties. This material demonstrated an impressive initial capacity of 316 mAh g-1 at 0.2 A g-1, with robust capacity retention after extended cycling. Remarkably, even at an elevated current density of 10 A g-1, it sustains a capacity of 161.6 mAh g-1, while maintaining a capacity retention of 97.6% over 2000 cycles. The results confirm that adjusting the structural water content in vanadium oxides significantly boosts their electrochemical capabilities, aligning experimental outcomes with computational forecasts and showcasing a novel approach for developing high-performance cathodes in energy storage technologies.
RESUMO
This study investigates the electrochemical properties of MgV2O4/V2O3 composites for Aqueous Zinc-Ion Batteries (AZIBs) using both Density Functional Theory (DFT) calculations and experimental validation. DFT analysis reveals significant electron mobility and reactivity at the MgV2O4/V2O3 interface, enhancing Zn2+ storage capabilities. This theoretical prediction is confirmed experimentally by synthesizing a novel MgV2O4/V2O3 composite that demonstrates superior electrochemical performance compared to pristine phases. Notably, the transition of the MgV2O4/V2O3 composite into an amorphous structure during electrochemical cycling is pivotal, providing enhanced diffusion pathways and increased conductivity. The composite delivers a consistent specific capacity of 330.2 mAh g-1 over 50 cycles at 0.1 A g-1 and maintains 152.7 mAh g-1 at an elevated current density of 20 A g-1 after 2000 cycles, validating the synergy between DFT insights and experimental outcomes, and underscoring the potential of amorphous structures in enhancing battery performance.
RESUMO
Advancing cathode materials is crucial for the broader application of aqueous zinc-ion batteries (ZIBs) in energy storage systems. This study presents amorphous H/VO4 (HVO), a novel cathode material engineered by substituting H+ for Mg2+ in Mg2VO4 (MgVO), designed to enhance performance of ZIBs. Initial exploration of MgVO through ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations revealed a favorable Mg2+ and Zn2+ exchange mechanism. This mechanism notably reduces electrostatic interactions and facilitates ion diffusion within the host lattice. Building upon these findings, in this work, theoretical calculations analysis indicated that amorphous HVO offers a higher diffusion coefficient for Zn2+ ions and fewer electrostatic interactions compared to its crystalline MgVO precursor. Subsequent empirical validation is achieved by synthesizing amorphous HVO using a rapid ion-exchange process, effectively replacing Mg2+ with H+ ions. The synthesized amorphous HVO demonstrated 100% capacity retention after 18000 cycles at a current density of 2 A g-1 and exhibited exceptional rate performance. These findings underscore the significant potential of HVO cathodes to enhance the durability and efficiency of aqueous ZIBs, positioning them as promising candidates for future energy storage technologies.
RESUMO
Imaging flow cytometry, which combines the advantages of flow cytometry and microscopy, has emerged as a powerful tool for cell analysis in various biomedical fields such as cancer detection. In this study, we develop multiplex imaging flow cytometry (mIFC) by employing a spatial wavelength division multiplexing technique. Our mIFC can simultaneously obtain brightfield and multi-color fluorescence images of individual cells in flow, which are excited by a metal halide lamp and measured by a single detector. Statistical analysis results of multiplex imaging experiments with resolution test lens, magnification test lens, and fluorescent microspheres validate the operation of the mIFC with good imaging channel consistency and micron-scale differentiation capabilities. A deep learning method is designed for multiplex image processing that consists of three deep learning networks (U-net, very deep super resolution, and visual geometry group 19). It is demonstrated that the cluster of differentiation 24 (CD24) imaging channel is more sensitive than the brightfield, nucleus, or cancer antigen 125 (CA125) imaging channel in classifying the three types of ovarian cell lines (IOSE80 normal cell, A2780, and OVCAR3 cancer cells). An average accuracy rate of 97.1% is achieved for the classification of these three types of cells by deep learning analysis when all four imaging channels are considered. Our single-detector mIFC is promising for the development of future imaging flow cytometers and for the automatic single-cell analysis with deep learning in various biomedical fields.
Assuntos
Aprendizado Profundo , Citometria de Fluxo , Processamento de Imagem Assistida por Computador , Humanos , Citometria de Fluxo/métodos , Linhagem Celular Tumoral , Processamento de Imagem Assistida por Computador/métodos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/diagnóstico por imagem , Citometria por Imagem/métodosRESUMO
Vibrio harveyi causes high mortality and severely limits grouper culture. The gut microbiota is an important biological barrier against pathogen invasion. In this study, we investigated dynamic changes in the intestinal microbial community, gene transcription and immune responses signatures of pearl gentian grouper (Epinephelus fuscoguttatusâ × Epinephelus lanceolatusâ) at 0, 3 and 7 days (referred to as d0, d3 and d7 groups, respectively) after infection with V. harveyi. The results demonstrated that the d7 treatment reduced the gut microbial diversity and increased the proportion of Proteobacteria and Cyanobacteria. Notably, several putative pathogenic genera (Sphingomonas and Bacteroides) proliferated, while putative probiotic genera (Rhodococcus and Lactobacillus) reduced, and these changes in intestinal bacteria might be correlated to the alterations of host immune-related molecules. The d3 and d7 treatments also altered the histomorphology and gene transcription profiles mainly associated with immune function in intestine, such as 'MAPK signaling pathway', 'Apoptosis' and 'Toll-like receptor (TLR) signaling pathway'. Furthermore, d3 group induced a homeostatic dysregulation of the antioxidant system, cytokines and TLR signaling, with a tendency to gradually return to a normal state in d7 group, along with the apoptosis process. The pathogenic infection suppressed the expression of JNK pathway and enhanced the ERK pathway. In conclusion, the dysbiosis of the intestinal bacterial communities caused by the immune changes that occurred during V. harveyi infection disrupted the intestine health in the pearl gentian grouper. These results provided a comprehensive understandings of the immune defense mechanisms in fish and valuable references to develop disease control strategies in grouper aquaculture.
Assuntos
Bass , Doenças dos Peixes , Microbioma Gastrointestinal , Vibrioses , Vibrio , Animais , Vibrio/fisiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Bass/imunologia , Bass/genética , Vibrioses/veterinária , Vibrioses/imunologia , Imunidade Inata/genética , Transcrição GênicaRESUMO
As a lymphocyte-specific surface receptor belonging to the cysteine-rich superfamily of scavenger receptors, CD6 acts as a pattern recognition receptor for microbial components and is involved in the regulation of inflammatory responses. However, the characteristics and functions of CD6 molecules in lower vertebrates represented by teleost fish are unknown. In this study, a CD6 homolog (designated OnCD6) was characterized from Nile tilapia (Oreochromis niloticus), and establishing its role as a PRRs that participates in immune recognition. OnCD6 contains an open reading frame of 1872 bp that encodes a peptide of 623 amino acids, and contains two conserved SR domain. Multiple sequence alignment revealed that OnCD6 shares a relatively high level of identity with those of other species. Transcriptional expression analysis revealed that OnCD6 was constitutively expressed in immunes tissues such as head kidney and thymus. The expression level of OnCD6 in mainly immune tissues were found significantly upregulated after the injection of Streptococcus agalactiae (S. agalactiae). Moreover, OnCD6 protein was located in the head kidney and brain, mainly over the plasma membrane of lymphocytes in these immune tissues. In vitro experiments showed that CD6 extracellular protein bound to and aggregated several Gram-positive and -negative bacterial strains through the recognition of bacterial surface conserved components LPS and LTA etc. In vivo experiments demonstrated that overexpression OnCD6 before S. agalactiae challenge significantly improved tilapia survival, and this was concomitant with reduced bacterial load and pro-inflammatory cytokines (IL-1ß and TNF-α). Taken together, our results illustrated the function of CD6 molecular pattern recognition receptors (PRRs) is conserved and plays an important role in antibacterial infection.
Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Streptococcus agalactiae/fisiologia , Sequência de Aminoácidos , Citocinas/metabolismo , Inflamação , Proteínas de Peixes/química , Infecções Estreptocócicas/veterinária , Regulação da Expressão GênicaRESUMO
As an alternative to the criticized antibiotics, probiotics have been adopted for their eco-friendly nature and ability to enhance host growth and immunity. Nevertheless, reports suggest ineffectiveness in commercially available probiotics since most are from non-fish sources; thus, this study was envisaged to isolate and characterize new Bacillus spp. from the gut of hybrid grouper (Epinephelus fuscoguttatusâ × Epinephelus lanceolatusâ) which could serve as potential probiotics. The isolation and characterization were performed based on their morphological and biochemical properties, and 16S rRNA sequencing homology analysis. A subsequent 30-day in vivo biosafety feeding trial was conducted to ascertain isolates' non-pathogenicity, as well as their effects on fish growth, and intestinal mucosal microvilli via scanning electron microscopy (SEM) analysis. Four Bacillus spp. strains, namely, B. velezensis strain PGSAK01 (accession number OQ726606), B. stercoris strain PGSAK05 (accession number OQ726607), B. velezensis strain PGSAK17 (accession number OQ726601), and B. subtilis strain PGSAK19 (accession number OQ726605), were identified and characterized in the current study. The strains showed promising probiotic properties such higher adhesion capability, higher thermotolerance, displaying higher survivability to 0.5 % bile, lower pH tolerance, γ-haemolytic activity, and multispecies characteristics. Among the 24 antibiotics tested, while all isolates showed susceptibility to 21, the PGSAK01 strain showed resistance to furazolidone antibiotics. None of the isolates showed possession of i) virulence factor genes encoding enterotoxigenic (hblA, hblC, hblD, nheA, nheB, and entFM) and emetic (cereulide synthetase gene, ces) genes, and ii) streptomycin resistance gene (vat c), ampicillin-resistant genes (mecA and bla), and vancomycin-resistant gene (van B). Nevertheless, the PGSAK01 and PGSAK17 strains showed possession of tek K, cat, and ant(4')-Ia (adenylyltransferase) (except the PGSAK01) resistant genes. All isolates displayed better antimicrobial effects against pathogenic bacteria Streptococcus agalactiae, S. iniae, Vibrio harveyi, and V. alginolyticus. The in vivo biosafety trial involved hybrid grouper fish being grouped into five (average weight 32 ± 0.94 g), namely, the group fed the basal diet void of isolate's supplementation (control), and the remaining four groups fed the basal diet with 1 × 108 CFU/g diet of individual strain PGSAK01, PGSAK05, PGSAK17, and PGSAK19 supplementation. At the end of the study, a significantly higher WGR, K (except the PGSAK01 group), VSI; lysozyme (except PGSAK01 group), total antioxidant activity, alkaline phosphatase, superoxide dismutase enzyme activities; highly dense intestinal mucosal villi (based on the scanning electron microscopy analysis); and significantly lower malondialdehyde levels were witnessed in the isolated treated groups compared to the control, supporting the results obtained in the auto-aggregation and cell-surface hydrophobicity test. This work's results have provided thought-provoking targets; thus, studies involving extensive genome sequencing and functional annotation analysis will be explored to offer unfathomable insights into their mechanisms of action and potential health benefits, further establishing the four Bacillus strains' (PGSAK01, PGSAK05, PGSAK17, and PGSAK19) potential role in probiotic fields and functional foods.
Assuntos
Bacillus , Bass , Probióticos , Animais , Probióticos/farmacologia , Bass/imunologia , Bacillus/fisiologia , Intestinos/microbiologia , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Antibiose , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Masculino , Ração Animal/análise , FemininoRESUMO
BACKGROUND: Ventricular septal rupture (VSR) is a mechanical issue that can occur following an acute myocardial infarction (AMI) and has a high mortality rate. It requires a comprehensive, team-based approach for prompt diagnosis and maintaining stable blood flow. While the occurrence of VSR has lessened over the past hundred years and advancements have been made in treatment techniques, the mortality rate within 30 days can still surpass 40 percent. Surgery is the primary treatment method. For patients with stable blood flow, it is generally considered safer to perform surgery 4-6 weeks after the AMI to repair the VSR. However, the timing of surgery for patients with early instability in their blood flow is still a topic of debate. SUMMARY: There is a lack of set criteria and standards to determine the best time for surgery in patients with VSR following an infarction who have unstable blood flow, especially when considering the use of blood circulation support devices and other techniques for maintaining blood flow that are used in clinical settings. KEY MESSAGES: This review outlines the features of different mechanical circulatory support devices utilized in treating VSR, along with the current scoring system designed to direct the treatment approach for VSR patients.
RESUMO
Unmanned aerial vehicles (UAVs) equipped with a miniaturized sensor package were developed for aerial observations, which realizes aerial observations affordable to scientists in atmospheric science and achieves aerial measurements in high spatial resolution. UAVs are deployed to a variety of aerial detecting tasks in different scientific scenarios including chemical industry parks (CIPs) with hazardous gases emissions, and some places difficult for humans to reach. In this study, UAV sensing technology was deployed to detect air pollutants in a suburb, a CIP and a natural gas plant, respectively. The effects of atmospheric conditions such as the atmospheric boundary layer height, long-distance transport and atmospheric stability on the spatiotemporal variations of the air pollutants vertical profiles were investigated by the UAV. The UAV with the sensor package was deployed to capture the methane (CH4) leakages in a natural gas plant. The spatiotemporal variations of CH4 in both vertical and horizontal directions studied by UAV were employed to calculate accurate CH4 emissions, which is crucial to reducing the emissions of greenhouse gases. The low-cost UAV sensing technology for air pollutants was developed by Dr. Xiaobing Pang, who was funded by the Newton Fellowship in 2009 and worked in the University of York. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
RESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by selective loss of dopaminergic neurons. We previously found that inhibition of von Hippel-Lindau (VHL) can alleviate dopaminergic neuron degeneration in PD models via regulation of mitochondrial homeostasis, however, the disease-related alterations of VHL and the regulatory mechanisms of VHL level in PD need to be further investigated. In this study, we found that the levels of VHL were markedly increased in multiple cell models of PD and identified microRNA-143-3p (miR-143-3p) as a promising candidate for regulating VHL expression involved in PD. miR-143-3p directly bound to the 3'untranslated region of human VHL mRNA and inhibited its translation, and exerted neuroprotective effects by improving cell viability, apoptosis and tyrosine hydroxylase abnormality. Furthermore, we demonstrated that miR-143-3p exerted neuroprotection by attenuating mitochondrial abnormality via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) axis, and AMPK inhibitor abolished the beneficial effects of miR-143-3p on the cell model of PD. Therefore, we identify the dysregulated VHL and miR-143-3p in PD, and propose the therapeutic potential of miR-143-3p to alleviate PD by improving mitochondrial homeostasis via AMPK/PGC-1α axis.
Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , MicroRNAs/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismoRESUMO
Cardiovascular thrombotic events have long been a perplexing factor in clinical settings, influencing patient prognoses significantly. Ultrasound-mediated acoustic therapy, an innovative thrombolytic treatment method known for its high efficiency, non-invasiveness, safety, and convenience, has demonstrated promising potential for clinical applications and has gradually become a focal point in cardiovascular thrombotic disease research. The current challenge lies in the technical complexities of preparing ultrasound-responsive carriers with thrombus-targeting capabilities and high thrombolytic efficiency. Additionally, optimizing the corresponding acoustic treatment mode is crucial to markedly enhance the thrombolytic effectiveness of ultrasound-mediated acoustic therapy. In light of the current status, this article provides a comprehensive review of the research progress in innovative ultrasound-mediated acoustic therapy for cardiovascular thrombotic diseases. It explores the impact of technical methods, therapeutic mechanisms, and influencing factors on the thrombolytic efficiency and clinical potential of ultrasound-mediated acoustic therapy. The review places particular emphasis on identifying solutions and key considerations in addressing the challenges associated with this cutting-edge therapeutic approach.
Assuntos
Trombose , Terapia por Ultrassom , Humanos , Trombose/diagnóstico por imagem , Trombose/terapia , Terapia por Ultrassom/métodos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/diagnóstico por imagem , Terapia Trombolítica/métodosRESUMO
Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.
Assuntos
Verde de Indocianina , Raios Infravermelhos , Oligopeptídeos , Terapia Trombolítica , Trombose , Animais , Terapia Trombolítica/métodos , Oligopeptídeos/química , Verde de Indocianina/química , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico , Nanopartículas/química , Fluorocarbonos/química , Dióxido de Silício/química , Humanos , Camundongos , Masculino , Coelhos , Ultrassonografia/métodos , PentanosRESUMO
The incidence of coronary artery disease has been increasing in recent years, with acute myocardial infarction as its most severe onset. The major aim for clinical treatment is to restore myocardial blood supply with the recanalization of coronary circulation as early as possible, while the still existed issue of microcirculation thromboembolism has become a serious obstacle. Thus, thrombus elimination in coronary microcirculation is crucial and essential to improve the treatment outcome of acute myocardial infarction. In recent years, from sonothrombolysis to sonoperfusion, ultrasound-mediated cardiovascular thrombolysis can effectively solve the problem of vascular thromboembolism, including microcirculation thromboembolism, and the treatment method is expected to obtain satisfied thrombolytic treatment effect with microthrombus elimination in coronary microvessels and function recovery of terminal microcirculation, which has potential clinical value for the establishment of novel treatment for coronary thromboembolism. Therefore, this paper reviews ultrasound-mediated cardiovascular thrombolysis including sonothrombolysis and sonoperfusion for the application exploration in the treatment of coronary artery thromboembolism, the mechanism of action, and its research progress.
RESUMO
BACKGROUND: In this study, we aimed to identify the risk factors for new-onset atrial fibrillation (NOAF) after postcoronary intervention in patients with acute myocardial infarction (AMI) and to establish a nomogram prediction model. METHODS: The clinical data of 506 patients hospitalized for AMI from March 2020 to February 2023 were retrospectively collected, and the patients were randomized into a training cohort (70%; n = 354) and a validation cohort (30%; n = 152). Independent risk factors were determined using least absolute shrinkage and selection operator and multivariate logistic regression. Predictive nomogram modeling was performed using R software. Nomograms were evaluated based on discrimination, correction, and clinical efficacy using the C-statistic, calibration plot, and decision curve analysis, respectively. RESULTS: The multivariate logistic regression analysis showed that P-wave amplitude in lead V1, age, and infarct type were independent risk factors for NOAF, and the area under the receiver operating characteristic curve of the training and validation sets was 0.760 (95% confidence interval [CI] 0.674-0.846) and 0.732 (95% CI 0.580-0.883), respectively. The calibration curves showed good agreement between the predicted and observed values in both the training and validation sets, supporting that the actual predictive power was close to the ideal predictive power. CONCLUSIONS: P-wave amplitude in lead V1, age, and infarct type were independent risk factors for NOAF in patients with AMI after intervention. The nomogram model constructed in this study can be used to assess the risk of NOAF development and has some clinical application value.
Assuntos
Fibrilação Atrial , Infarto do Miocárdio , Humanos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Estudos Retrospectivos , Curva ROC , Distribuição AleatóriaRESUMO
OBJECTIVES: To explore potential profiles of successful aging among empty nesters using latent profile analysis and to analyze their influencing factors. METHODS: A total of 452 community-based empty nesters were included using convenience sampling. Empty nesters were surveyed using the Successful Ageing Scale, Social Capital Scale, Sense of Coherence Scale, and Chinese version of the Health-Promotion Lifestyle Scale-II. Latent profile analysis was used to categorize the successful aging of empty nesters, and factors influencing each category were analyzed using multiple logistic regression. RESULTS: Four latent profiles of successful aging were identified: 'low successful aging-low spirituality', 'high successful aging-spiritual fluctuation', 'high successful aging-balanced development group', and 'medium successful aging-medium spirituality'. The results of the multiple logistic regression analysis showed that gender, education, residence mode, and social capital were factors influencing the potential profiles of successful aging. CONCLUSIONS: There are four potential categories of successful aging among empty nesters. Gender, education, residence mode, and social capital were associated with successful aging among empty nesters. Targeting interventions may help enhance empty nesters' successful aging. Future research should combine subjective and objective indicators to assess the health of older people and explore other determinants for formulating interventions to improve successful aging of empty nesters.