Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(13): 22225-22232, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381301

RESUMO

We investigate and experimentally demonstrate a cladding modulated Bragg grating superstructure as a dynamically tunable and reconfigurable multi-wavelength notch filter. A non-uniform heater element was implemented to periodically modulate the effective index of the grating. The Bragg grating bandwidth is controlled by judiciously positioning loading segments away from the waveguide core, resulting in a formation of periodically spaced reflection sidebands. The thermal modulation of a periodically configured heater elements modifies the waveguide effective index, where an applied current controls the number and intensity of the secondary peaks. The device was designed to operate in TM polarization near the central wavelength of 1550 nm and was fabricated on a 220-nm silicon-on-insulator platform, using titanium-tungsten heating elements and aluminum interconnects. We experimentally demonstrate that the Bragg grating self-coupling coefficient can be effectively controlled in a range from 7 mm-1 to 110 mm-1 by thermal tuning, with a measured bandgap and sideband separation of 1 nm and 3 nm, respectively. The experimental results are in excellent agreement with simulations.

2.
Opt Express ; 29(11): 16867-16878, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154239

RESUMO

In recent years, sensing and communication applications have fueled important developments of group-IV photonics in the mid-infrared band. In the long-wave range, most platforms are based on germanium, which is transparent up to ∼15-µm wavelength. However, those platforms are limited by the intrinsic losses of complementary materials or require complex fabrication processes. To overcome these limitations, we propose suspended germanium waveguides with a subwavelength metamaterial lateral cladding that simultaneously provides optical confinement and allows structural suspension. These all-germanium waveguides can be fabricated in one dry and one wet etch step. A propagation loss of 5.3 dB/cm is measured at a wavelength of 7.7 µm. These results open the door for the development of integrated devices that can be fabricated in a simple manner and can potentially cover the mid-infrared band up to ∼15 µm.

3.
Opt Lett ; 46(19): 4821-4824, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598208

RESUMO

Current optical communication systems rely on the use of wavelength division multiplexing (WDM) to keep up with the increasing data rate requirements. The wavelength demultiplexer is the key component to implement WDM systems. In this Letter, we design and experimentally demonstrate a demultiplexer based on a curved grating waveguide geometry that separates eight channels with a spacing of 10 nm (1249 GHz) around the central wavelength of 1550 nm. The fabricated device shows very low insertion loss (∼1dB) and a crosstalk (XT) below -25dB. This device leverages metamaterial index engineering to implement the lateral cladding on one side of the waveguide. This makes it possible to design a waveguide grating with highly directional lateral emission by operating in a regime where diffraction into the silica upper cladding is frustrated, thus suppressing losses due to off-chip radiation.

4.
Opt Lett ; 46(15): 3733-3736, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329268

RESUMO

Integrated optical antennas are key components for on-chip light detection and ranging technology (LIDAR). In order to achieve a highly collimated far field with reduced beam divergence, antenna lengths on the order of several millimeters are required. In the high-index contrast silicon photonics platform, achieving such long antennas typically demands weakly modulated gratings with lithographic minimum feature sizes below 10 nm. Here, we experimentally demonstrate a new, to the best of our knowledge, strategy to make long antennas in silicon waveguides using a metamaterial subwavelength grating (SWG) waveguide core loaded with a lateral periodic array of radiative elements. The mode field confinement is controlled by the SWG duty cycle, and the delocalized propagating mode overlaps with the periodic perturbations. With this arrangement, weak antenna radiation strength can be achieved while maintaining a minimum feature size as large as 80 nm. Using this strategy, we experimentally demonstrate a 2-millimeter-long, single-etched subwavelength-engineered optical antenna on a conventional 220 nm SOI platform, presenting a measured far-field beam divergence of 0.1° and a wavelength scanning sensitivity of 0.13°/nm.

5.
Opt Lett ; 46(10): 2409-2412, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988596

RESUMO

Diffraction gratings that redirect light propagating in a channel waveguide to an on-chip slab are emerging as important building blocks in integrated photonics. Such distributed Bragg deflectors enable precise shaping of slab confined beams for a variety of applications, including wavelength multiplexing, optical phased array feeding, and coupling interfaces for on-chip point-to-point communications. However, these deflectors suffer from significant losses caused by off-chip radiation. In this Letter, we show, for the first time, to the best of our knowledge, that off-chip radiation can be dramatically reduced by using the single-beam phase matching condition and subwavelength metamaterial refractive index engineering. We present a deflector design with losses below 0.3 dB, opening a path toward new applications of distributed Bragg deflectors in integrated photonics.

6.
Opt Lett ; 46(21): 5300-5303, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724460

RESUMO

Beam splitters are core components of photonic integrated circuits and are often implemented with multimode interference couplers. While these devices offer high performance, their operational bandwidth is still restrictive for sensing applications in the mid-infrared wavelength range. Here we experimentally demonstrate a subwavelength-structured 2×2 multimode interference coupler with high performance in the 3.1-3.7µm range, doubling the bandwidth of a conventional device.

7.
Opt Express ; 28(25): 37971-37985, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379620

RESUMO

Subwavelength grating (SWG) waveguides have been shown to provide enhanced light-matter interaction resulting in superior sensitivity in integrated photonics sensors. Narrowband integrated optical filters can be made by combining SWG waveguides with evanescently coupled Bragg gratings. In this paper, we assess the sensing capabilities of this novel filtering component with rigorous electromagnetic simulations. Our design is optimized for an operating wavelength of 1310 nm to benefit from lower water absorption and achieve narrower bandwidths than at the conventional wavelength of 1550 nm. Results show that the sensor achieves a sensitivity of 507 nm/RIU and a quality factor of 4.9 × 104, over a large dynamic range circumventing the free spectral range limit of conventional devices. Furthermore, the intrinsic limit of detection, 5.1 × 10-5 RIU constitutes a 10-fold enhancement compared to state-of-the-art resonant waveguide sensors.

8.
Opt Lett ; 45(20): 5668-5671, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057254

RESUMO

Optical antennas are key components in optical phased arrays for light detection and ranging technology requiring long sensing range and high scanning resolution. To achieve a narrow beam width in the far-field region, antenna lengths of several millimeters or more are required. To date, such long antennas have been impossible to achieve in silicon waveguides because currently demonstrated technologies do not allow accurate control of grating strength. Here, we report on a new type of surface-emitting silicon waveguide with a dramatically increased antenna length of L=3.65mm. This is achieved by using a subwavelength metamaterial waveguide core evanescently coupled with radiative segments laterally separated from the core. This results in a far-field diffracted beam width of 0.025°, which is a record small beam divergence for a silicon photonics surface-emitting device. We also demonstrate that by using a design with L-shaped surface-emitting segments, the radiation efficiency of the antenna can be substantially increased compared to a conventional design, with an efficiency of 72% at the wavelength of 1550 nm.

9.
Opt Express ; 27(9): 12616-12629, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052800

RESUMO

Photonic biosensors offer label-free detection of biomolecules for applications ranging from clinical diagnosis to food quality monitoring. Both sensors based on Mach-Zehnder interferometers and ring resonators are widely used, but are usually read-out using different schemes, making a direct comparison of their fundamental limit of detection challenging. A coherent detection scheme, adapted from optical communication systems, has been recently shown to achieve excellent detection limits, using a simple fixed-wavelength source. Here we present, for the first time, a theoretical model to determine the fundamental limit of detection of such a coherent read-out system, for both interferometric and resonant sensors. Based on this analysis, we provide guidelines for sensor optimization in the presence of optical losses and show that interferometric sensors are preferable over resonant structures when the sensor size is not limited by the available sample volume.

10.
Opt Express ; 27(23): 33180-33193, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31878392

RESUMO

In integrated optical circuits light typically travels in waveguides which provide both vertical and horizontal confinement, enabling efficient routing between different parts of the chip. However, for a variety of applications, including on-chip wireless communications, steerable phased arrays or free-space inspired integrated optics, optical beams that can freely propagate in the horizontal plane of a 2D slab waveguide are advantageous. Here we present a distributed Bragg deflector that enables well controlled coupling from a waveguide mode to such a 2D on-chip beam. The device consists of a channel waveguide and a slab waveguide region separated by a subwavelength metamaterial spacer to prevent uncontrolled leakage of the guided mode. A blazed grating in the waveguide sidewall is used to gradually diffract light into the slab region. We develop a computationally efficient strategy for designing gratings that generate arbitrarily shaped beams. As a proof-of-concept we design, in the silicon-on-insulator platform, a compact ×75 Gaussian beam expander and a partial beam deflector. For the latter, we also demonstrate a prototype device with experimental results showing good agreement with our theoretical predictions. We also demonstrate via a rigorous simulation that two such couplers in a back-to-back configuration efficiently couple light, suggesting that these devices can be used as highly directive antennas in the chip plane.

11.
Opt Lett ; 44(4): 1043-1046, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30768051

RESUMO

Bragg gratings are fundamental building blocks for integrated photonic circuits. In the high-index contrast silicon-on-insulator material platform, it is challenging to accurately control the grating strength and achieve narrow spectral bandwidths. Here we demonstrate a novel Bragg grating geometry utilizing a silicon subwavelength grating (SWG) waveguide with evanescently coupled periodic Bragg loading segments placed outside the SWG core. We report experimental 3 dB filter bandwidths in a range from 8 nm to 150 pm by adjusting the distance of the Bragg loading segments from the core and the relative phase shift of the segments on the two sides of the waveguide, with a structure that has a minimum feature size of 100 nm.

12.
Opt Lett ; 41(15): 3443-6, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472589

RESUMO

Subwavelength gratings (SWG) are photonic structures with a period small enough to suppress diffraction, thereby acting as artificial dielectric materials, also called all-dielectric metamaterials. This property has been exploited in many high-performance photonic integrated devices in the silicon-on-insulator (SOI) platform. While SWG waveguides are theoretically lossless, they may exhibit leakage penalty to the substrate due to a combination of reduced modal confinement and finite thickness of the buried oxide (BOX) layer. In this Letter, for the first time, to the best of our knowledge, we analyze substrate leakage losses in SWG waveguides. We establish a direct relation between the effective index of the waveguide mode and the leakage losses which, remarkably, is independent of the geometric parameters of the SWG waveguide. This universal relation is demonstrated both numerically and experimentally, and it provides practical design guidelines to mitigate leakage losses. For BOX thicknesses of 2 and 3 µm, we find negligible leakage losses when the mode effective index is higher than 1.65 and 1.55, respectively.

13.
Opt Lett ; 40(18): 4190-3, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371893

RESUMO

We present the first experimental demonstration of a new fiber-chip grating coupler concept that exploits the blazing effect by interleaving the standard full (220 nm) and shallow etch (70 nm) trenches in a 220 nm thick silicon layer. The high directionality is obtained by controlling the separation between the deep and shallow trenches to achieve constructive interference in the upward direction and destructive interference toward the silicon substrate. Utilizing this concept, the grating directionality can be maximized independent of the bottom oxide thickness. The coupler also includes a subwavelength-engineered index-matching region, designed to reduce the reflectivity at the interface between the injection waveguide and the grating. We report a measured fiber-chip coupling efficiency of -1.3 dB, the highest coupling efficiency achieved to date for a surface grating coupler in a 220 nm silicon-on-insulator platform fabricated in a conventional dual-etch process without high-index overlays or bottom mirrors.

14.
Opt Lett ; 39(24): 6931-4, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25503033

RESUMO

We propose a novel method to implement a compact and fabrication-tolerant polarization splitter and rotator (PSR) on the silicon-on-insulator platform. The PSR consists of a silicon wire waveguide coupled to a subwavelength grating (SWG) waveguide in an asymmetrical directional coupler. The SWG effect allows an additional degree of design freedom to engineer the equivalent material refractive index. This is advantageously used to effectively compensate for fabrication inaccuracies in PSRs. Our simulation results show that the PSR has a low TM-to-TE polarization conversion loss of -0.13 dB (a conversion efficiency of 97%) at the wavelength of 1550 nm, and better than -0.4 dB conversion loss over the entire C-band wavelength range. Compared to the PSRs made of conventional wire waveguides, the use of SWG index engineering improves the waveguide width fabrication tolerance substantially, from ±3 nm to ±40 nm. A compact device size with a coupling length of 25 µm is achieved.

15.
J Opt Soc Am A Opt Image Sci Vis ; 20(3): 557-68, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12630842

RESUMO

A novel spectral method with variable transformation, the adaptive Hermite-Gauss decomposition method (A-HGDM), has been developed and applied to the analysis of three-dimensional (3D) dielectric structures. The proposed method includes an optimization strategy to automatically find the quasi-optimum numerical parameters of the variable transformation with low computational effort. The technique has been tested by analyzing two typical 3D dielectric structures: the rectangular step-index waveguide and the rib-waveguide directional coupler. In both cases, the A-HGDM increases the accuracy of the Hermite-Gauss decomposition method (HGDM), especially when the mode is near cutoff, and improves the computational efficiency of previously published optimization strategies (optimized HGDM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA