Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 28(9): 2537-47, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21470968

RESUMO

Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.


Assuntos
Genoma de Planta , Primulaceae , Análise de Sequência de DNA/métodos , Sequências de Repetição em Tandem , Brachypodium/genética , Evolução Molecular , Deleção de Genes , Duplicação Gênica , Oryza/genética , Primulaceae/genética , Sorghum/genética
2.
Theor Appl Genet ; 113(8): 1563-70, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16988815

RESUMO

The tightly linked puroindoline genes, Pina and Pinb, control grain texture in wheat, with wild type forms of both giving soft, and a sequence alteration affecting protein expression or function in either giving rise to hard wheat. Previous experiments have shown that addition of wild type Pina in the presence of mutated Pinb gave intermediate grain texture but addition of wild type Pinb gave soft grain. This raises questions as to whether Pina may be less functional than Pinb. Our goal here was to develop and characterize wheat lines expressing the wild type Pina-D1a sequence in hard wheat with the null mutation (Pina-D1b) for Pina. Three transgenic lines plus Bobwhite were evaluated in two environments. Grain texture, grain protein, and kernel weight were determined for the transgenic lines and Bobwhite. The three transgenic lines had soft phenotype, and none of the transgenic lines differed from Bobwhite for grain protein or kernel weight. The soft phenotype was accompanied by increases in Pina transcript accumulation. Total Triton X-114 extractable PINA and PINB increased from 2.5 to 5.5 times those from a soft wheat reference sample, and friabilin, PINA and PINB bound to starch, increased from 3.8 to 7.8 times those of the soft wheat reference. Bobwhite showed no starch bound PINA, but transgenic lines had levels from 5.3 to 13.7 times those of the soft wheat reference sample. Starch bound PINB in transgenic lines also increased from 0.9 to 2.5 times that for the soft wheat reference sample. The transgenic expression of wild type Pina sequence in the Pina null genotype gave soft grain with the characteristics of soft wheat including increased starch bound friabilin. The results support the hypothesis that both wild type Pin genes need to be present for friabilin formation and soft grain.


Assuntos
Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/anatomia & histologia , Triticum/anatomia & histologia , Triticum/genética , Alelos , Teste de Complementação Genética , Octoxinol , Fenótipo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Polietilenoglicóis/química , Transcrição Gênica , Transformação Genética , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA