Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Methods ; 18(4): 382-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782607

RESUMO

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.


Assuntos
Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Bicamadas Lipídicas , Termodinâmica
2.
J Chem Inf Model ; 63(11): 3448-3452, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171034

RESUMO

In molecular simulations, periodic boundary conditions are typically used to avoid surface effects occurring at the boundaries of the simulation box. A consequence of this is that molecules and assemblies may appear split over the boundaries. Broken molecular assemblies make it difficult to interpret, analyze, and visualize molecular simulation data. We present a general and fast algorithm that repairs molecular assemblies that are broken due to periodic boundary conditions. The open source method presented here, MDVWhole, works for all translation-only crystallographic periodic boundary conditions. The method consumes little memory and can fix the visualization of the assembly of millions of particles in a few seconds. Thus, it is suitable for processing both single simulation frames and long trajectories with millions of points.


Assuntos
Simulação por Computador
3.
Proc Natl Acad Sci U S A ; 117(11): 5861-5872, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123101

RESUMO

The cytoskeletal protein actin polymerizes into filaments that are essential for the mechanical stability of mammalian cells. In vitro experiments showed that direct interactions between actin filaments and lipid bilayers are possible and that the net charge of the bilayer as well as the presence of divalent ions in the buffer play an important role. In vivo, colocalization of actin filaments and divalent ions are suppressed, and cells rely on linker proteins to connect the plasma membrane to the actin network. Little is known, however, about why this is the case and what microscopic interactions are important. A deeper understanding is highly beneficial, first, to obtain understanding in the biological design of cells and, second, as a possible basis for the building of artificial cortices for the stabilization of synthetic cells. Here, we report the results of coarse-grained molecular dynamics simulations of monomeric and filamentous actin in the vicinity of differently charged lipid bilayers. We observe that charges on the lipid head groups strongly determine the ability of actin to adsorb to the bilayer. The inclusion of divalent ions leads to a reversal of the binding affinity. Our in silico results are validated experimentally by reconstitution assays with actin on lipid bilayer membranes and provide a molecular-level understanding of the actin-membrane interaction.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Actinas/química , Células Artificiais , Membrana Celular/química , Membrana Celular/metabolismo , Fenômenos Químicos , Biologia Computacional , Simulação por Computador , Citoesqueleto/química , Citoesqueleto/metabolismo , Íons/química , Íons/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Eletricidade Estática
4.
J Chem Inf Model ; 61(5): 2407-2417, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33886304

RESUMO

The CorA family of proteins plays a housekeeping role in the homeostasis of divalent metal ions in many bacteria and archaea as well as in mitochondria of eukaryotes, rendering it an important target to study the mechanisms of divalent transport and regulation across different life domains. Despite numerous studies, the mechanistic details of the channel gating and the transport of the metal ions are still not entirely understood. Here, we use all-atom and coarse-grained molecular dynamics simulations combined with in vitro experiments to investigate the influence of divalent cations on the function of CorA. Simulations reveal pronounced asymmetric movements of monomers that enable the rotation of the α7 helix and the cytoplasmic subdomain with the subsequent formation of new interactions and the opening of the channel. These computational results are functionally validated using site-directed mutagenesis of the intracellular cytoplasmic domain residues and biochemical assays. The obtained results infer a complex network of interactions altering the structure of CorA to allow gating. Furthermore, we attempt to reconcile the existing gating hypotheses for CorA to conclude the mechanism of transport of divalent cations via these proteins.


Assuntos
Proteínas de Transporte de Cátions , Simulação de Dinâmica Molecular , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Magnésio/metabolismo , Mutagênese Sítio-Dirigida
5.
J Chem Inf Model ; 61(6): 2869-2883, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048229

RESUMO

Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Proteínas de Membrana , Simulação de Dinâmica Molecular
6.
Phys Chem Chem Phys ; 22(37): 21083-21093, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945311

RESUMO

Self-assembled nanostructures arise when building blocks spontaneously organize into ordered aggregates that exhibit different properties compared to the disorganized monomers. Here, we study an amphiphilic cyanine dye (C8S3) that is known to self-assemble into double-walled, hollow, nanotubes with interesting optical properties. The molecular packing of the dyes inside the nanotubes, however, remains elusive. To reveal the structural features of the C8S3 nanotubes, we performed atomistic Molecular Dynamics simulations of preformed bilayers and nanotubes. We find that different packing arrangements lead to stable structures, in which the tails of the C8S3 molecules are interdigitated. Our results are verified by SAXS experiments. Together our data provide a detailed structural characterization of the C8S3 nanotubes. Furthermore, our approach was able to resolve the ambiguity inherent from cryo-TEM measurements in calculating the wall thickness of similar systems. The insights obtained are expected to be generally useful for understanding and designing other supramolecular assemblies.

7.
PLoS Comput Biol ; 14(6): e1006229, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29874235

RESUMO

The human dopamine transporter (hDAT) is located on presynaptic neurons, where it plays an essential role in limiting dopaminergic signaling by temporarily curtailing high neurotransmitter concentration through rapid re-uptake. Transport by hDAT is energized by transmembrane ionic gradients. Dysfunction of this transporter leads to disease states, such as Parkinson's disease, bipolar disorder or depression. It has been shown that hDAT and other members of the monoamine transporter family exist in oligomeric forms at the plasma membrane. Several residues are known to be involved in oligomerization, but interaction interfaces, oligomer orientation and the quarternary arrangement in the plasma membrane remain poorly understood. Here we examine oligomeric forms of hDAT using a direct approach, by following dimerization of two randomly-oriented hDAT transporters in 512 independent simulations, each being 2 µs in length. We employed the DAFT (docking assay for transmembrane components) approach, which is an unbiased molecular dynamics simulation method to identify oligomers, their conformations and populations. The overall ensemble of a total of >1 ms simulation time revealed a limited number of symmetric and asymmetric dimers. The identified dimer interfaces include all residues known to be involved in dimerization. Importantly, we find that the surface of the bundle domain is largely excluded from engaging in dimeric interfaces. Such an interaction would typically lead to inhibition by stabilization of one conformation, while substrate transport relies on a large scale rotation between the inward-facing and the outward-facing state.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Multimerização Proteica , Humanos , Simulação de Dinâmica Molecular , Domínios Proteicos
8.
J Chem Phys ; 149(14): 144111, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30316276

RESUMO

The hydration free energy (HFE) is a critical property for predicting and understanding chemical and biological processes in aqueous solution. There are a number of computational methods to derive HFE, generally classified into the equilibrium or non-equilibrium methods, based on the type of calculations used. In the present study, we compute the hydration free energies of 34 small, neutral, organic molecules with experimental HFE between +2 and -16 kcal/mol. The one-sided non-equilibrium methods Jarzynski Forward (JF) and Backward (JB), the two-sided non-equilibrium methods Jarzynski mean based on the average of JF and JB, Crooks Gaussian Intersection (CGI), and the Bennett Acceptance Ratio (BAR) are compared to the estimates from the two-sided equilibrium method Multistate Bennett Acceptance Ratio (MBAR), which is considered as the reference method for HFE calculations, and experimental data from the literature. Our results show that the estimated hydration free energies from all the methods are consistent with MBAR results, and all methods provide a mean absolute error of ∼0.8 kcal/mol and root mean square error of ∼1 kcal for the 34 organic molecules studied. In addition, the results show that one-sided methods JF and JB result in systematic deviations that cannot be corrected entirely. The statistical efficiency ε of the different methods can be expressed as the one over the simulation time times the average variance in the HFE. From such an analysis, we conclude that ε(MBAR) > ε(BAR) ≈ ε(CGI) > ε(JX), where JX is any of the Jarzynski methods. In other words, the non-equilibrium methods tested here for the prediction of HFE have lower computational efficiency than the MBAR method.

9.
Proc Natl Acad Sci U S A ; 112(20): 6353-8, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941408

RESUMO

DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.


Assuntos
Bicamadas Lipídicas/química , Modelos Moleculares , Serina/genética , Transdução de Sinais/fisiologia , Sensação Térmica/fisiologia , Motivos de Aminoácidos/genética , Dicroísmo Circular , Dimerização , Simulação de Dinâmica Molecular , Conformação Proteica , Serina/química , Espectrometria de Fluorescência
10.
PLoS Comput Biol ; 12(11): e1005169, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812115

RESUMO

G protein coupled receptors (GPCRs) allow for the transmission of signals across biological membranes. For a number of GPCRs, this signaling was shown to be coupled to prior dimerization of the receptor. The chemokine receptor type 4 (CXCR4) was reported before to form dimers and their functionality was shown to depend on membrane cholesterol. Here, we address the dimerization pattern of CXCR4 in pure phospholipid bilayers and in cholesterol-rich membranes. Using ensembles of molecular dynamics simulations, we show that CXCR4 dimerizes promiscuously in phospholipid membranes. Addition of cholesterol dramatically affects the dimerization pattern: cholesterol binding largely abolishes the preferred dimer motif observed for pure phospholipid bilayers formed mainly by transmembrane helices 1 and 7 (TM1/TM5-7) at the dimer interface. In turn, the symmetric TM3,4/TM3,4 interface is enabled first by intercalating cholesterol molecules. These data provide a molecular basis for the modulation of GPCR activity by its lipid environment.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Modelos Químicos , Multimerização Proteica , Receptores CXCR4/química , Receptores CXCR4/ultraestrutura , Sítios de Ligação , Simulação por Computador , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Relação Estrutura-Atividade
11.
Biochim Biophys Acta ; 1848(6): 1319-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25749153

RESUMO

The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.


Assuntos
Cianobactérias/metabolismo , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Difusão , Cinética , Lipídeos/química , Conformação Molecular , Plastoquinona/análogos & derivados , Plastoquinona/metabolismo , Eletricidade Estática
12.
Biophys J ; 109(4): 760-71, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26287628

RESUMO

Synaptic vesicle fusion requires assembly of the SNARE complex composed of SNAP-25, syntaxin-1, and synaptobrevin-2 (sybII) proteins. The SNARE proteins found in vesicle membranes have previously been shown to dimerize via transmembrane (TM) domain interactions. While syntaxin homodimerization is supposed to promote the transition from hemifusion to complete fusion, the role of synaptobrevin's TM domain association in the fusion process remains poorly understood. Here, we combined coarse-grained and atomistic simulations to model the homodimerization of the sybII transmembrane domain and of selected TM mutants. The wild-type helix is shown to form a stable, right-handed dimer with the most populated helix-helix interface, including key residues predicted in a previous mutagenesis study. In addition, two alternative binding interfaces were discovered, which are essential to explain the experimentally observed higher-order oligomerization of sybII. In contrast, only one dimerization interface was found for a fusion-inactive poly-Leu mutant. Moreover, the association kinetics found for this mutant is lower as compared to the wild-type. These differences in dimerization between the wild-type and the poly-Leu mutant are suggested to be responsible for the reported differences in fusogenic activity between these peptides. This study provides molecular insight into the role of TM sequence specificity for peptide aggregation in membranes.


Assuntos
Proteínas R-SNARE/metabolismo , Sequência de Aminoácidos , Dimerização , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Proteínas R-SNARE/genética
13.
Eur Biophys J ; 44(8): 685-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26254213

RESUMO

The protein 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is involved in the quorum sensing of several bacterial species, including Helicobacter pylori. In particular, these bacteria depend on MTAN for synthesis of vitamin K2 homologs. The residue D198 in the active site of MTAN seems to be of crucial importance, by acting as a hydrogen-bond acceptor for the ligand. In this study, we investigated the conformation and dynamics of apo and holo H. pylori MTAN (HpMTAN), and assessed the effect of protonation of D198 by use of molecular dynamics simulations. Our results show that protonation of the active site of HpMTAN can cause a conformational transition from a closed state to an open state even in the absence of substrate, via inter-chain mechanical coupling.


Assuntos
Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , N-Glicosil Hidrolases/química , Prótons , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Helicobacter pylori/enzimologia , Ligação de Hidrogênio , Dados de Sequência Molecular , N-Glicosil Hidrolases/metabolismo , Ligação Proteica
14.
Phys Chem Chem Phys ; 17(2): 1390-8, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25427292

RESUMO

The transient dimerization of transmembrane proteins is an important event in several cellular processes and computational methods are being increasingly used to quantify their underlying energetics. Here, we probe the thermodynamics and kinetics of a simple transmembrane dimer to understand membrane protein association. A multi-step framework has been developed in which the dimerization profiles are calculated from coarse-grain molecular dynamics simulations, followed by meso-scale simulations using parameters calculated from the coarse-grain model. The calculated value of ΔGassoc is approx. -20 kJ mol(-1) and is consistent between three methods. Interestingly, the meso-scale stochastic model reveals low dimer percentages at physiologically-relevant concentrations, despite a favorable ΔGassoc. We identify generic driving forces arising from the protein backbone and lipid bilayer and complementary factors, such as protein density, that govern self-interactions in membranes. Our results provide an important contribution in understanding membrane protein organization and linking molecular, nano-scale computational studies to meso-scale experimental data.


Assuntos
Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Multimerização Proteica , Cinética , Bicamadas Lipídicas/química , Método de Monte Carlo , Peptídeos/química , Estrutura Secundária de Proteína , Processos Estocásticos , Termodinâmica
15.
J Am Chem Soc ; 136(41): 14554-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25229711

RESUMO

The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different lipid species, combining 14 types of headgroups and 11 types of tails asymmetrically distributed across the two leaflets, closely mimicking an idealized mammalian plasma membrane. We observe an enrichment of cholesterol in the outer leaflet and a general non-ideal lateral mixing of the different lipid species. Transient domains with liquid-ordered character form and disappear on the microsecond time scale. These domains are coupled across the two membrane leaflets. In the outer leaflet, distinct nanodomains consisting of gangliosides are observed. Phosphoinositides show preferential clustering in the inner leaflet. Our data provide a key view on the lateral organization of lipids in one of life's fundamental structures, the cell membrane.


Assuntos
Membrana Celular/química , Lipídeos/química , Simulação de Dinâmica Molecular
16.
Methods Enzymol ; 701: 237-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025573

RESUMO

The Martini model is a popular force field for coarse-grained simulations. Membranes have always been at the center of its development, with the latest version, Martini 3, showing great promise in capturing more and more realistic behavior. In this chapter we provide a step-by-step tutorial on how to construct starting configurations, run initial simulations and perform dedicated analysis for membrane-based systems of increasing complexity, including leaflet asymmetry, curvature gradients and embedding of membrane proteins.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Membrana Celular/química , Membrana Celular/metabolismo
17.
Structure ; 31(4): 492-503.e7, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36870335

RESUMO

Despite tremendous efforts, the exact structure of SARS-CoV-2 and related betacoronaviruses remains elusive. SARS-CoV-2 envelope is a key structural component of the virion that encapsulates viral RNA. It is composed of three structural proteins, spike, membrane (M), and envelope, which interact with each other and with the lipids acquired from the host membranes. Here, we developed and applied an integrative multi-scale computational approach to model the envelope structure of SARS-CoV-2 with near atomistic detail, focusing on studying the dynamic nature and molecular interactions of its most abundant, but largely understudied, M protein. The molecular dynamics simulations allowed us to test the envelope stability under different configurations and revealed that the M dimers agglomerated into large, filament-like, macromolecular assemblies with distinct molecular patterns. These results are in good agreement with current experimental data, demonstrating a generic and versatile approach to model the structure of a virus de novo.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Simulação de Dinâmica Molecular
18.
J Phys Chem B ; 125(36): 10059-10071, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34464144

RESUMO

The calcium-binding protein S100A4 plays an important role in a wide range of biological processes such as cell motility, invasion, angiogenesis, survival, differentiation, contractility, and tumor metastasis and interacts with a range of partners. To understand the functional roles and interplay of S100A4 binding partners such as Ca2+ and nonmuscle myosin IIA (NMIIA), we used molecular dynamics simulations to investigate apo S100A4 and four holo S100A4 structures: S100A4 bound to Ca2+, S100A4 bound to NMIIA, S100A4 bound to Ca2+ and NMIIA, and a mutated S100A4 bound to Ca2+ and NMIIA. Our results show that two competing factors, namely, Ca2+-induced activation and NMIIA-induced inhibition, modulate the dynamics of S100A4 in a competitive manner. Moreover, Ca2+ binding results in enhanced dynamics, regulating the interactions of S100A4 with NMIIA, while NMIIA induces asymmetric dynamics between the chains of S100A4. The results also show that in the absence of Ca2+ the S100A4-NMIIA interaction is weak compared to that of between S100A4 bound to Ca2+ and NMIIA, which may offer a quick response to dropping calcium levels. In addition, certain mutations are shown to play a marked role on the dynamics of S100A4. The results described here contribute to understanding the interactions of S100A4 with NMIIA and the functional roles of Ca2+, NMIIA, and certain mutations on the dynamics of S100A4. The results of this study could be interesting for the development of inhibitors that exploit the shift of balance between the competing roles of Ca2+ and NMIIA.


Assuntos
Cálcio/metabolismo , Miosina não Muscular Tipo IIA , Proteína A4 de Ligação a Cálcio da Família S100 , Modelos Moleculares , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
19.
J Chem Theory Comput ; 17(12): 7873-7885, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609876

RESUMO

As molecular dynamics simulations increase in complexity, new analysis tools are necessary to facilitate interpreting the results. Lipids, for instance, are known to form many complicated morphologies, because of their amphipathic nature, becoming more intricate as the particle count increases. A few lipids might form a micelle, where aggregation of tens of thousands could lead to vesicle formation. Millions of lipids comprise a cell and its organelle membranes, and are involved in processes such as neurotransmission and transfection. To study such phenomena, it is useful to have analysis tools that understand what is meant by emerging entities such as micelles and vesicles. Studying such systems at the particle level only becomes extremely tedious, counterintuitive, and computationally expensive. To address this issue, we developed a method to track all the individual lipid leaflets, allowing for easy and quick detection of topological changes at the mesoscale. By using a voxel-based approach and focusing on locality, we forego costly geometrical operations without losing important details and chronologically identify the lipid segments using the Jaccard index. Thus, we achieve a consistent sequential segmentation on a wide variety of (lipid) systems, including monolayers, bilayers, vesicles, inverted hexagonal phases, up to the membranes of a full mitochondrion. It also discriminates between adhesion and fusion of leaflets. We show that our method produces consistent results without the need for prefitting parameters, and segmentation of millions of particles can be achieved on a desktop machine.

20.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34323918

RESUMO

Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/metabolismo , Ésteres de Retinil/metabolismo , Triglicerídeos/metabolismo , Animais , Células Cultivadas , Cricetulus , Subunidades gama da Proteína de Ligação ao GTP/deficiência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA