Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 190: 107960, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918683

RESUMO

The cycad genus Ceratozamia comprises 40 species from Mexico, Guatemala, Belize, and Honduras, where cycads occur throughout climatically varied montane habitats. Ceratozamia has the potential to reveal the history and processes of species diversification across diverse Neotropical habitats in this region. However, the species relationships within Ceratozamia and the ecological trends during its evolution remain unclear. Here, we aimed to clarify the phylogenetic relationships, the timing of clade and species divergences, and the niche evolution throughout the phylogenetic history of Ceratozamia. Genome-wide DNA sequences were obtained with MIG-seq, and multiple data-filtering steps were used to optimize the dataset used to construct an ultrametric species tree. Divergence times among branches and ancestral niches were estimated. The niche variation among species was evaluated, summarized into two principal components, and their ancestral states were reconstructed to test whether niche shifts among branches can be explained by random processes, under a Brownian Motion model. Ceratozamia comprises three main clades, and most species relationships within the clades were resolved. Ceratozamia has diversified since the Oligocene, with major branching events occurring during the Miocene. This timing is consistent with fossil evidence, the timing estimated for other Neotropical plant groups, and the major geological events that shaped the topographic and climatic variation in Mexico. Patterns of niche evolution in the genus do not accord with the Brownian Motion model. Rather, non-random evolution with shifts towards more seasonal environments at high latitudes, or shifts towards humid or dry environments at low latitudes explain the diversification of Ceratozamia. We present a comprehensive phylogenetic reconstruction for Ceratozamia and identify for the first time the environmental factors involved in clade and species diversification within the genus. This study alleviates the controversies regarding the species relationships in the genus and provides the first evidence that latitude-associated environmental factors may influence processes of niche evolution in cycads.


Assuntos
Zamiaceae , Filogenia , Zamiaceae/genética , Filogeografia , Ecossistema , Fatores de Tempo
2.
Am J Bot ; 109(9): 1456-1471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35938973

RESUMO

PREMISE: The successful establishment of polyploid species is hypothesized to be promoted by niche differentiation from the parental species or by range shifts during climate oscillations. However, few studies have considered both of these factors simultaneously. We resolved the origin of a tetraploid fern, Lepisorus yamaokae, and explored a pattern of niche differentiation among the allotetraploid and parental species in past and current climates. METHODS: We reconstructed phylogenetic trees based on plastid marker and single-copy nuclear genes to resolve the allopolyploid origin of L. yamaokae. We also evaluated climatic niche differentiation among L. yamaokae and its two parental species using species distribution models in geographic space and principal component analysis. RESULTS: We infer that L. yamaokae had a single allotetraploid origin from L. annuifrons and L. uchiyamae. Climatic niche analyses show that the parental species currently occupy different niche spaces. The predicted distribution of the parental species at the Last Glacial Maximum (LGM) suggests more opportunities for hybridization during the LGM or during other recent temporary range shifts. Lepisorus yamaokae has a narrower niche than the additive niche of the parental species. We also observed niche conservatism in L. yamaokae. CONCLUSIONS: Range shifts of the parental species during climatic oscillations in the Quaternary likely facilitated the formation and establishment of L. yamaokae. Further, the genetic intermediacy of L. yamaokae may have enabled a niche shift in its microenvironment, resulting in its successful establishment without a macroclimatic niche shift in L. yamaokae.


Assuntos
Gleiquênias , Polypodiaceae , Ecossistema , Gleiquênias/genética , Hibridização Genética , Filogenia , Poliploidia , Polypodiaceae/genética
3.
New Phytol ; 227(6): 1872-1884, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32392621

RESUMO

Niche conservatism is the tendency of lineages to retain the same niche as their ancestors. It constrains biological groups and prevents ecological divergence. However, theory predicts that niche conservatism can hinder gene flow, strengthen drift and increase local adaptation: does it mean that it also can facilitate speciation? Why does this happen? We aim to answer these questions. We examined the variation of chloroplast DNA, genome-wide single nucleotide polymorphisms, morphological traits and environmental variables across the Dioon merolae cycad populations. We tested geographical structure, scenarios of demographic history, and niche conservatism between population groups. Lineage divergence is associated with the presence of a geographical barrier consisting of unsuitable habitats for cycads. There is a clear genetic and morphological distinction between the geographical groups, suggesting allopatric divergence. However, even in contrasting available environmental conditions, groups retain their ancestral niche, supporting niche conservatism. Niche conservatism is a process that can promote speciation. In D. merolae, lineage divergence occurred because unsuitable habitats represented a barrier against gene flow, incurring populations to experience isolated demographic histories and disparate environmental conditions. This study explains why cycads, despite their ancient lineage origin and biological stasis, have been able to diversify into modern ecosystems worldwide.


Assuntos
Zamiaceae , Ecossistema , Especiação Genética , Geografia , México , Filogenia
4.
Mol Plant Microbe Interact ; 32(9): 1110-1120, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30880586

RESUMO

To investigate the genetic diversity and understand the process of horizontal gene transfer (HGT) in nodule bacteria associated with Lotus japonicus, we analyzed sequences of three housekeeping and five symbiotic genes using samples from a geographically wide range in Japan. A phylogenetic analysis of the housekeeping genes indicated that L. japonicus in natural environments was associated with diverse lineages of Mesorhizobium spp., whereas the sequences of symbiotic genes were highly similar between strains, resulting in remarkably low nucleotide diversity at both synonymous and nonsynonymous sites. Guanine-cytosine content values were lower in symbiotic genes, and relative frequencies of recombination between symbiotic genes were also lower than those between housekeeping genes. An analysis of molecular variance showed significant genetic differentiation among populations in both symbiotic and housekeeping genes. These results confirm that the Mesorhizobium genes required for symbiosis with L. japonicus behave as a genomic island (i.e., a symbiosis island) and suggest that this island has spread into diverse genomic backgrounds of Mesorhizobium via HGT events in natural environments. Furthermore, our data compilation revealed that the genetic diversity of symbiotic genes in L. japonicus-associated symbionts was among the lowest compared with reports of other species, which may be related to the recent population expansion proposed in Japanese populations of L. japonicus.


Assuntos
Transferência Genética Horizontal , Variação Genética , Lotus , Mesorhizobium , Nódulos Radiculares de Plantas , Lotus/microbiologia , Mesorhizobium/classificação , Mesorhizobium/genética , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
5.
Ann Bot ; 121(1): 47-60, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29155921

RESUMO

Background and Aims: Aridification is considered a selective pressure that might have influenced plant diversification. It is suggested that plants adapted to aridity diversified during the Miocene, an epoch of global aridification (≈15 million years ago). However, evidence supporting diversification being a direct response to aridity is scarce, and multidisciplinary evidence, besides just phylogenetic estimations, is necessary to support the idea that aridification has driven diversification. The cycad genus Dioon (Zamiaceae), a tropical group including species occurring from humid forests to arid zones, was investigated as a promising study system to understand the associations among habitat shifts, diversification times, the evolution of leaf epidermal adaptations, and aridification of Mexico. Methods: A phylogenetic tree was constructed from seven chloroplast DNA sequences and the ITS2 spacer to reveal the relationships among 14 Dioon species from habitats ranging from humid forests to deserts. Divergence times were estimated and the habitat shifts throughout Dioon phylogeny were detected. The epidermal anatomy among Dioon species was compared and correlation tests were performed to associate the epidermal variations with habitat parameters. Key Results: Events of habitat shifts towards arid zones happened exclusively in one of the two main clades of Dioon. Such habitat shifts happened during the species diversification of Dioon, mainly during the Miocene. Comparative anatomy showed epidermal differences between species from arid and mesic habitats. The variation of epidermal structures was found to be correlated with habitat parameters. Also, most of the analysed epidermal traits showed significant phylogenetic signals. Conclusions: The diversification of Dioon has been driven by the aridification of Mexico. The Miocene timing corresponds to the expansion of arid zones that embedded the ancestral Dioon populations. As response, species in arid zones evolved epidermal traits to counteract aridity stress. This case study provides a robust body of evidence supporting the idea that aridification is an important driver of biodiversity.


Assuntos
Evolução Biológica , Mudança Climática , Zamiaceae/genética , Biodiversidade , Clima Desértico , Ecossistema , Filogenia , Epiderme Vegetal/anatomia & histologia , Chuva , Zamiaceae/anatomia & histologia
6.
Ann Bot ; 121(3): 535-548, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29293877

RESUMO

Background and Aims: Biogeographic transition zones are promising areas to study processes of biogeographic evolution and its influence on biological groups. The Mexican transition zone originated due to the overlap of Nearctic and Neotropical biota, which promoted great biological diversification. However, since most previous studies in this area were focused on revealing the phylogeography of Nearctic plants, how historical biogeographic configuration influenced the expansion and diversification of the Neotropical flora remains almost unknown. Using the cycad genus Dioon (Zamiaceae), this study aimed to test whether the biogeographic provinciality of the Mexican transition zone reflects the history of diversification of Neotropical plants. Methods: Two chloroplast DNA (cpDNA) regions were analysed from 101 specimens of 15 Dioon species to reveal the distribution of haplogroups. In addition, genome-wide single nucleotide polymorphisms (SNPs) from 84 specimens were used to test the concordance between phylogenetic clusters and the biogeographic provinces. An ultrametric tree was constructed from the sequences containing SNPs to reconstruct the biogeographic events of vicariance and dispersal of Dioon across the Neotropical biogeographic provinces. Key Results: Four Dioon lineages with strong phylogeographic structures were recognized using both cpDNA and SNP data. The lineages correspond to two clades that originated from a common ancestor in Eastern Mexico. One clade expanded and diversified in South-east Mexico and Central America. Another clade diversified into three lineages that dispersed to North-east, South and North-west Mexico. Each lineage was biogeographically delimitated. Biogeographic provinces might have provided disparate ecological conditions that facilitated speciation in Dioon since the Miocene. Conclusions: The current genetic structure and species diversity of Dioon depict the history of expansion and diversification of the northernmost Neotropical provinces. Past biogeographic connectivities were favoured by elevated topographies, since mountain systems served as corridors for the migration of Dioon and as refugia of tropical communities that diversified during the formation of modern Neotropical forests.


Assuntos
Zamiaceae/genética , América Central , DNA de Cloroplastos/genética , Variação Genética/genética , Haplótipos/genética , México , Filogenia , Filogeografia , Polimorfismo de Nucleotídeo Único/genética , Zamiaceae/anatomia & histologia
7.
J Plant Res ; 131(6): 945-959, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30167928

RESUMO

The Japanese Lepisorus thunbergianus complex contains diploid and tetraploid races of L. thunbergianus and a hexaploid species, L. mikawanus. Here, we performed molecular phylogenetic analysis on this complex to delimit species and to elucidate the evolutionary origins of tetraploid and hexaploid species. Chloroplast DNA (cpDNA) phylogeny supported the monophyly of the complex. Based on a single-copy nuclear gene (PgiC) tree, the tetraploid L. thunbergianus samples could be classified into two variants: an allotetraploid of hybrid origin between diploid L. thunbergianus and Japanese L. angustus and another allotetraploid of hybrid origin between diploid L. thunbergianus and an unknown diploid race of L. tosaensis. These variants can be recognized morphologically and distinguished from their parent species. Hence, here we described these allopolyploids as new species, L. nigripes and L. kuratae, respectively. The hexaploid species L. mikawanus has three types of PgiC alleles, each of which was derived from diploid L. thunbergianus, L. tosaensis, and Japanese L. angustus, while cpDNA shows that it is included in Japanese L. thunbergianus clade. Based on the cpDNA phylogeny and PgiC nucleotide sequences, we therefore concluded that L. mikawanus is an allohexaploid that originated through hybridization between tetraploid species, L. nigripes and an unknown ancestral diploid race of L. tosaensis.


Assuntos
Poliploidia , Polypodiaceae/genética , Tetraploidia , DNA de Cloroplastos/genética , DNA de Plantas/genética , Evolução Molecular , Japão , Filogenia , Análise de Sequência de DNA
8.
Am J Bot ; 104(9): 1390-1406, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885241

RESUMO

PREMISE OF THE STUDY: Delimitation of cryptic species provides an understanding of biodiversity and opportunities to elucidate speciation processes. Extensive flavonoid variation has been reported in the tetraploid cytotype of the fern, Asplenium normale, although related species have no intraspecific variations in flavonoid composition. We hypothesized that Japanese A. normale still harbors multiple cryptic species with different flavonoid compositions, and tested this hypothesis using chemotaxonomic and multilocus genotyping approaches. METHODS: We determined the multilocus genotypes (MLGs) of 230 samples from 37 populations for one chloroplast DNA region and three nuclear genes. MLGs were used to delimit reproductively isolated lineages by population-genetic approaches. We also tested the correspondence between genetically recognized groups and flavonoid compositions. To identify the origins of putative cryptic species, we conducted phylogenetic analysis of the DNA markers used in genotyping. KEY RESULTS: The genetic clusters and flavonoid compositions showed clear correspondence. We recognized three putative cryptic species in tetraploid Asplenium normale in Japan. Phylogenetic analyses revealed that cryptic species I and III originated from allopolyploidization between a diploid A. normale and an unknown diploid of A. boreale, and cryptic species II originated from allopolyploidization between a diploid A. normale and A. oligophlebium. CONCLUSIONS: Our study demonstrated that intraspecific variation of secondary metabolites can be a good indicator of cryptic species in ferns. The presence of the two cryptic species having the same progenitor diploid pair suggests that speciation between allopolyploid lineages of independent origin may be more common than previously considered.


Assuntos
Gleiquênias/genética , Especiação Genética , Tetraploidia , DNA de Cloroplastos/análise , Gleiquênias/química , Flavonoides/análise , Filogenia
9.
BMC Evol Biol ; 15: 57, 2015 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-25888261

RESUMO

BACKGROUND: Mangrove forests are ecologically important but globally threatened intertidal plant communities. Effective mangrove conservation requires the determination of species identity, management units, and genetic structure. Here, we investigate the genetic distinctiveness and genetic structure of an iconic but yet taxonomically confusing species complex Rhizophora mucronata and R. stylosa across their distributional range, by employing a suite of 20 informative nuclear SSR markers. RESULTS: Our results demonstrated the general genetic distinctiveness of R. mucronata and R. stylosa, and potential hybridization or introgression between them. We investigated the population genetics of each species without the putative hybrids, and found strong genetic structure between oceanic regions in both R. mucronata and R. stylosa. In R. mucronata, a strong divergence was detected between populations from the Indian Ocean region (Indian Ocean and Andaman Sea) and the Pacific Ocean region (Malacca Strait, South China Sea and Northwest Pacific Ocean). In R. stylosa, the genetic break was located more eastward, between populations from South and East China Sea and populations from the Southwest Pacific Ocean. The location of these genetic breaks coincided with the boundaries of oceanic currents, thus suggesting that oceanic circulation patterns might have acted as a cryptic barrier to gene flow. CONCLUSIONS: Our findings have important implications on the conservation of mangroves, especially relating to replanting efforts and the definition of evolutionary significant units in Rhizophora species. We outlined the genetic structure and identified geographical areas that require further investigations for both R. mucronata and R. stylosa. These results serve as the foundation for the conservation genetics of R. mucronata and R. stylosa and highlighted the need to recognize the genetic distinctiveness of closely-related species, determine their respective genetic structure, and avoid artificially promoting hybridization in mangrove restoration programmes.


Assuntos
Rhizophoraceae/classificação , Rhizophoraceae/genética , Sudeste Asiático , Fluxo Gênico , Deriva Genética , Repetições de Microssatélites , Filogeografia , Simpatria
10.
J Plant Res ; 127(6): 661-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25064510

RESUMO

Apogamous fern species are often difficult to distinguish from related species because of their continuous morphological variations. To clarify the genetic relationships among the members of the Dryopteris varia complex, we analyzed the nucleotide sequences of the plastid gene rbcL and the nuclear gene PgiC. We also analyzed the diploid sexual species D. caudipinna and D. chinensis, which have not been included in the complex, but were recently shown to be closely related to the complex in a molecular phylogenetic study. The PgiC sequences of the diploid sexual species, D. varia, D. saxifraga, D. sp. 'protobissetiana' (undescribed diploid sexual species), D. caudipinna, and D. chinensis, were well differentiated and hence designated A, B, C, D, and E, respectively. Thus, the PgiC constitution of apogamous species in the complex was as follows: D. bissetiana, B + C; D. kobayashii, B + C + E); D. pacifica, A + C, A + B + C, or A + C + D; D. sacrosancta, A + C + E; and D. saxifragivaria, B + C. These results suggest that these apogamous species are formed by hybridizations of species including not only the three diploid sexual species of the D. varia complex (A, B, and C) but also the two diploid sexual species D. caudipinna (D) and D. chinensis (E), which do not belong to the complex.


Assuntos
Evolução Biológica , Dryopteris/genética , Hibridização Genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dryopteris/metabolismo , Japão , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ploidias , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Análise de Sequência de DNA
12.
Front Plant Sci ; 14: 1286320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264021

RESUMO

Allopolyploidization often leads to disruptive conflicts among more than two sets of subgenomes, leading to genomic modifications and changes in gene expression. Although the evolutionary trajectories of subgenomes in allopolyploids have been studied intensely in angiosperms, the dynamics of subgenome evolution remain poorly understood in ferns, despite the prevalence of allopolyploidization. In this study, we have focused on an allotetraploid fern-Phegopteris decursivepinnata-and its diploid parental species, P. koreana (K) and P. taiwaniana (T). Using RNA-seq analyses, we have compared the gene expression profiles for 9,540 genes among parental species, synthetic F1 hybrids, and natural allotetraploids. The changes in gene expression patterns were traced from the F1 hybrids to the natural allopolyploids. This study has revealed that the expression patterns observed in most genes in the F1 hybrids are largely conserved in the allopolyploids; however, there were substantial differences in certain genes between these groups. In the allopolyploids compared with the F1 hybrids, the number of genes showing a transgressive pattern in total expression levels was increased. There was a slight reduction in T-dominance and a slight increase in K-dominance, in terms of expression level dominance. Interestingly, there is no obvious bias toward the T- or K-subgenomes in the number and expression levels overall, showing the absence of subgenome dominance. These findings demonstrated the impacts of the substantial transcriptome change after hybridization and the moderate modification during allopolyploid establishment on gene expression in ferns and provided important insights into subgenome evolution in polyploid ferns.

13.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348049

RESUMO

Genome sizes are known to vary within and among closely related species, but the knowledge about genomic factors contributing to the variation and their impacts on gene functions is limited to only a small number of species. This study identified a more than 2-fold heritable genome size variation among the unicellular Zygnematophycean alga, Closterium peracerosum-strigosum-littorale (C. psl.) complex, based on short-read sequencing analysis of 22 natural strains and F1 segregation analysis. Six de novo assembled genomes revealed that genome size variation is largely attributable to genome-wide copy number variation (CNV) among strains rather than mating type-linked genomic regions or specific repeat sequences such as rDNA. Notably, about 30% of genes showed CNV even between strains that can mate with each other. Transcriptome and gene ontology analysis demonstrated that CNV is distributed nonrandomly in terms of gene functions, such that CNV was more often observed in the gene set with stage-specific expression. Furthermore, in about 30% of these genes with CNV, the expression level does not increase proportionally with the gene copy number, suggesting presence of dosage compensation, which was overrepresented in genes involved in basic biological functions, such as translation. Nonrandom patterns in gene duplications and corresponding expression changes in terms of gene functions may contribute to maintaining the high level of CNV associated with extensive genome size variation in the C. psl. complex, despite its possible detrimental effects.


Assuntos
Closterium , Closterium/genética , Tamanho do Genoma , Variações do Número de Cópias de DNA , Plantas/genética , Reprodução/genética
14.
Am J Bot ; 98(12): e378-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22106442

RESUMO

PREMISE OF THE STUDY: We developed novel microsatellite markers in Arisaema serratum, a perennial herb that possesses pitfall flowers and exhibits labile sex expression, to facilitate research on parentage and pollination biology in this species. METHODS AND RESULTS: By using procedures for enrichment of desired microsatellite-containing fragments and PCR-based isolation of microsatellite arrays, we detected 18 novel microsatellite loci. Thirteen were highly polymorphic: the number of alleles per locus ranged from six to 46, the observed heterozygosities ranged from 0.320 to 0.940, and the expected heterozygosities ranged from 0.440 to 0.976. Nine of the 13 markers successfully amplified regions in congeneric species. CONCLUSIONS: These highly polymorphic markers will facilitate further studies on the mode of pollination and other aspects of reproductive biology in A. serratum.


Assuntos
Arisaema/genética , Técnicas Genéticas , Repetições de Microssatélites/genética , Alelos , Frequência do Gene/genética , Loci Gênicos/genética , Dados de Sequência Molecular , Polimorfismo Genético , Especificidade da Espécie
15.
Sci Rep ; 11(1): 3124, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542454

RESUMO

Evolution of mating systems has become one of the most important research areas in evolutionary biology. Cyrtomium falcatum is a homosporous fern species native to eastern Asia. Two subspecies belonging to a sexual diploid race of C. falcatum are recognized: subsp. littorale and subsp. australe. Subspecies littorale shows intermediate selfing rates, while subsp. australe is an obligate outcrosser. We aimed to evaluate the process of mating system evolution and divergence for the two subspecies using restriction site associated DNA sequencing (RAD-seq). The results showed that subsp. littorale had lower genetic diversity and stronger genetic drift than subsp. australe. Fluctuations in the effective population size over time were evaluated by extended Bayesian skyline plot and Stairway plot analyses, both of which revealed a severe population bottleneck about 20,000 years ago in subsp. littorale. This bottleneck and the subsequent range expansion after the LGM appear to have played an important role in the divergence of the two subspecies and the evolution of selfing in subsp. littorale. These results shed new light on the relationship between mating system evolution and past demographic change in fern species.


Assuntos
Evolução Biológica , Cruzamentos Genéticos , Gleiquênias/genética , Filogenia , Teorema de Bayes , Diploide , Gleiquênias/classificação , Deriva Genética , Variação Genética , Japão , Densidade Demográfica , Análise de Componente Principal , Reprodução
16.
Ecol Evol ; 11(11): 6962-6976, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141268

RESUMO

Latitude is correlated with environmental components that determine the distribution of biodiversity. In combination with geographic factors, latitude-associated environmental variables are expected to influence speciation, but empirical evidence on how those factors interplay is scarce. We evaluated the genetic and environmental variation among populations in the pair of sister species Dioon sonorense-D. vovidesii, two cycads distributed along a latitudinal environmental gradient in northwestern Mexico, to reveal their demographic histories and the environmental factors involved in their divergence. Using genome-wide loci data, we determined the species delimitation, estimated the gene flow, and compared multiple demographic scenarios of divergence. Also, we estimated the variation of climatic variables among populations and used ecological niche models to test niche overlap between species. The effect of geographic and environmental variables on the genetic variation among populations was evaluated using linear models. Our results suggest the existence of a widespread ancestral population that split into the two species ~829 ky ago. The geographic delimitation along the environmental gradient occurs in the absence of major geographic barriers, near the 28th parallel north, where a zonation of environmental seasonality exists. The northern species, D. vovidesii, occurs in more seasonal environments but retains the same niche of the southern species, D. sonorense. The genetic variation throughout populations cannot be solely explained by stochastic processes; the latitudinal-associated seasonality has been an additive factor that strengthened the species divergence. This study represents an example of how speciation can be achieved by the effect of the latitude-associated factors on the genetic divergence among populations.

17.
PLoS One ; 15(5): e0233095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433707

RESUMO

Although polyploidy is pervasive and its evolutionary significance has been recognized, it remains unclear how newly formed polyploid species become established. In particular, the impact of multiple origins on genetic differentiation among populations of a polyploid species and whether lineages of independent origins have different evolutionary potentials remain open questions. We used population genetic and phylogenetic approaches to identify genetic differentiation between lineages with independent origins within an allotetraploid fern, Lepisorus nigripes. A total of 352 individuals from 51 populations were collected throughout the distribution range. To examine the genetic structure, multilocus genotyping, Bayesian population structure analysis, and neighbor-net analysis were carried out using single-copy nuclear genes. Phylogenetic trees were constructed to detect recurrent polyploid origins. Proportions of abortive spores were analysed as the measure of postzygotic reproductive isolation. Two genetically distinct lineages, the East-type and the West-type, were distributed mainly in the eastern and western parts, respectively, of the Japanese archipelago. Phylogenetic analyses indicated independent origins of these types and detected additional independent origins within each type. We also revealed limited genetic recombination between both types, even in their sympatric regions. F1 hybrids between the East- and West-types showed a reduction in fertility. It is likely that the East- and West-types formed independently in the eastern and western parts of Japan, respectively. The limited genetic recombination and reduced fertility of hybrids suggest that the two types are at an incipient stage of speciation. Two polyploid lineages with independent geographic origins could develop reproductive isolation barrier(s).


Assuntos
Polypodiaceae/genética , Polypodiaceae/fisiologia , Teorema de Bayes , Evolução Molecular , Filogenia , Poliploidia , Polypodiaceae/classificação , Reprodução/genética , Reprodução/fisiologia , Isolamento Reprodutivo
18.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33016310

RESUMO

Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.


Assuntos
Lotus , Mesorhizobium , Rhizobium , Genômica , Mesorhizobium/genética , Rhizobium/genética , Simbiose
19.
J Plant Res ; 122(5): 509-21, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19529882

RESUMO

Introgression has been considered to be one of main factors leading to phylogenetic incongruence among different datasets at lower taxonomic levels. In the plants of Pinaceae, the mtDNA, cpDNA, and nuclear DNA (nrDNA) may have different evolutionary histories through introgression because they are inherited maternally, paternally and biparentally, respectively. We compared mtDNA, cpDNA, and two low-copy nrDNA phylogenetic trees in the genus Pinus subgenus Strobus, in order to detect unknown past introgression events in this group. nrDNA trees were mostly congruent with the cpDNA tree, and supported the recent sectional and subsectional classification system. In contrast, mtDNA trees split the members of sect. Quinquefoliae into two groups that were not observed in the other gene trees. The factors constituting incongruence may be divided into the following two categories: the different splits within subsect. Strobus, and the non-monophyly of subsect. Gerardianae. The former was hypothesized to have been caused by the past introgression of cpDNA, mtDNA or both between Eurasian and North American species through Beringia. The latter was likely caused by the chimeric structure of the mtDNA sequence of P. bungeana, which might have originated through past hybridization, or through a horizontal transfer event and subsequent recombination.


Assuntos
Núcleo Celular/genética , Cloroplastos/genética , Genes Mitocondriais/genética , Genes de Plantas , Pinus/genética , Sequência de Bases , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Geografia , Dados de Sequência Molecular , Filogenia
20.
Mol Ecol ; 17(23): 5092-103, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19120991

RESUMO

The reproductive isolation barriers and the mating patterns among Pinus pumila, P. parviflora var. pentaphylla and their hybrids were examined by flowering phenology and genetic assays of three life stages: airborne-pollen grains, adults and seeds, in a hybrid zone on Mount Apoi, Hokkaido, Japan. Chloroplast DNA composition of the airborne-pollen was determined by single-pollen polymerase chain reaction. Mating patterns were analysed by estimating the molecular hybrid index of the seed parent, their seed embryos and pollen parents. The observation of flowering phenology showed that the flowering of P. pumila precedes that of P. parviflora var. pentaphylla by about 6 to 10 days within the same altitudinal ranges. Although this prezygotic isolation barrier is effective, the genetic assay of airborne-pollen showed that the two pine species, particularly P. pumila, still have chances to form F(1) hybrid seeds. Both parental species showed a strong assortative mating pattern; F(1) seeds were found in only 1.4% of seeds from P. pumila mother trees and not at all in P. parviflora var. pentaphylla. The assortative mating was concluded as the combined result of flowering time differentiation and cross-incompatibility. In contrast to the parental species, hybrids were fertilized evenly by the two parental species and themselves. The breakdown of prezygotic barriers (intermediate flowering phenology) and cross-incompatibility may account for the unselective mating. It is suggested that introgression is ongoing on Mount Apoi through backcrossing between hybrids and parental species, despite strong isolation barriers between the parental species.


Assuntos
Hibridização Genética , Pinus/genética , Pólen/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Genética Populacional , Genótipo , Japão , Reprodução/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA