Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-29941635

RESUMO

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

2.
Malar J ; 16(1): 446, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115999

RESUMO

BACKGROUND: Protein kinases have been shown to be key drug targets, especially in the area of oncology. It is of interest to explore the possibilities of protein kinases as a potential target class in Plasmodium spp., the causative agents of malaria. However, protein kinase biology in malaria is still being investigated. Therefore, rather than assaying against individual protein kinases, a library of 4731 compounds with protein kinase inhibitor-like scaffolds was screened against the causative parasite, Plasmodium falciparum. This approach is more holistic and considers the whole kinome, making it possible to identify compounds that inhibit more than one P. falciparum protein kinase, or indeed other malaria targets. RESULTS: As a result of this screen, 9 active compound series were identified; further validation was carried out on 4 of these series, with 3 being progressed into hits to lead chemistry. The detailed evaluation of one of these series is described. DISCUSSION: This screening approach proved to be an effective way to identify series for further optimisation against malaria. Compound optimisation was carried out in the absence of knowledge of the molecular target. Some of the series had to be halted for various reasons. Mode of action studies to find the molecular target may be useful when problems prevent further chemical optimisation. CONCLUSIONS: Progressible series were identified through phenotypic screening of a relatively small focused kinase scaffold chemical library.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Avaliação Pré-Clínica de Medicamentos
3.
Proc Natl Acad Sci U S A ; 111(50): E5455-62, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453091

RESUMO

Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na(+) levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na(+) homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.


Assuntos
Antimaláricos/farmacologia , ATPases Transportadoras de Cálcio/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Isoquinolinas/farmacologia , Malária/tratamento farmacológico , Modelos Moleculares , Plasmodium/efeitos dos fármacos , Antimaláricos/farmacocinética , ATPases Transportadoras de Cálcio/genética , Senescência Celular/efeitos dos fármacos , Descoberta de Drogas , Resistência a Medicamentos/genética , Eritrócitos/efeitos dos fármacos , Citometria de Fluxo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacocinética , Ensaios de Triagem em Larga Escala , Isoquinolinas/farmacocinética , Estrutura Molecular
4.
Antimicrob Agents Chemother ; 58(1): 61-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24126580

RESUMO

Moxifloxacin has shown excellent activity against drug-sensitive as well as drug-resistant tuberculosis (TB), thus confirming DNA gyrase as a clinically validated target for discovering novel anti-TB agents. We have identified novel inhibitors in the pyrrolamide class which kill Mycobacterium tuberculosis through inhibition of ATPase activity catalyzed by the GyrB domain of DNA gyrase. A homology model of the M. tuberculosis H37Rv GyrB domain was used for deciphering the structure-activity relationship and binding interactions of inhibitors with mycobacterial GyrB enzyme. Proposed binding interactions were later confirmed through cocrystal structure studies with the Mycobacterium smegmatis GyrB ATPase domain. The most potent compound in this series inhibited supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC50) of <5 nM, an MIC of 0.03 µg/ml against M. tuberculosis H37Rv, and an MIC90 of <0.25 µg/ml against 99 drug-resistant clinical isolates of M. tuberculosis. The frequency of isolating spontaneous resistant mutants was ∼10(-6) to 10(-8), and the point mutation mapped to the M. tuberculosis GyrB domain (Ser208 Ala), thus confirming its mode of action. The best compound tested for in vivo efficacy in the mouse model showed a 1.1-log reduction in lung CFU in the acute model and a 0.7-log reduction in the chronic model. This class of GyrB inhibitors could be developed as novel anti-TB agents.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Humanos , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
5.
Malar J ; 13: 190, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24886460

RESUMO

BACKGROUND: In view of the need to continuously feed the pipeline with new anti-malarial agents adapted to differentiated and more stringent target product profiles (e.g., new modes of action, transmission-blocking activity or long-duration chemo-protection), a chemical library consisting of more than 250,000 compounds has been evaluated in a blood-stage Plasmodium falciparum growth inhibition assay and further assessed for chemical diversity and novelty. METHODS: The selection cascade used for the triaging of hits from the chemical library started with a robust three-step in vitro assay followed by an in silico analysis of the resulting confirmed hits. Upon reaching the predefined requirements for selectivity and potency, the set of hits was subjected to computational analysis to assess chemical properties and diversity. Furthermore, known marketed anti-malarial drugs were co-clustered acting as 'signposts' in the chemical space defined by the hits. Then, in cerebro evaluation of the chemical structures was performed to identify scaffolds that currently are or have been the focus of anti-malarial medicinal chemistry programmes. Next, prioritization according to relaxed physicochemical parameters took place, along with the search for structural analogues. Ultimately, synthesis of novel chemotypes with desired properties was performed and the resulting compounds were subsequently retested in a P. falciparum growth inhibition assay. RESULTS: This screening campaign led to a 1.25% primary hit rate, which decreased to 0.77% upon confirmatory repeat screening. With the predefined potency (EC50 < 1 µM) and selectivity (SI > 10) criteria, 178 compounds progressed to the next steps where chemical diversity, physicochemical properties and novelty assessment were taken into account. This resulted in the selection of 15 distinct chemical series. CONCLUSION: A selection cascade was applied to prioritize hits resulting from the screening of a medium-sized chemical library against blood-stage P. falciparum. Emphasis was placed on chemical novelty whereby computational clustering, data mining of known anti-malarial chemotypes and the application of relaxed physicochemical filters, were key to the process. This led to the selection of 15 chemical series from which ten confirmed their activity when newly synthesized sample were tested.


Assuntos
Antimaláricos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Algoritmos , Antimaláricos/química , Antimaláricos/farmacologia , Humanos
6.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24405701

RESUMO

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Piridonas/síntese química , Tiazóis/síntese química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Ureia/síntese química , Ureia/farmacologia , Administração Oral , Animais , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Modelos Animais de Doenças , Concentração Inibidora 50 , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridonas/química , Piridonas/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Inibidores da Topoisomerase II/química , Ureia/química
7.
Parasitology ; 141(1): 128-39, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23863111

RESUMO

Malaria is a disease that still affects a significant proportion of the global human population. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. This article highlights the current mainstay treatments alongside a selection of emerging new clinical molecules from the portfolio of Medicines for Malaria Venture (MMV) and our partners. In each case, the key highlights from each research phase are described to demonstrate how these new potential medicines were discovered. Given the increased focus of the community on eradicating the disease, the strategy for next generation combination medicines that will provide such potential is explained.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Antimaláricos/síntese química , Ensaios Clínicos como Assunto , Erradicação de Doenças , Combinação de Medicamentos , Desenho de Fármacos , Humanos , Malária/parasitologia , Malária/prevenção & controle , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium vivax/metabolismo , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 275: 116599, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38909569

RESUMO

The increase in research funding for the development of antimalarials since 2000 has led to a surge of new chemotypes with potent antimalarial activity. High-throughput screens have delivered several thousand new active compounds in several hundred series, including the 4,7-diphenyl-1,4,5,6,7,8-hexahydroquinolines, hereafter termed dihydropyridines (DHPs). We optimized the DHPs for antimalarial activity. Structure-activity relationship studies focusing on the 2-, 3-, 4-, 6-, and 7-positions of the DHP core led to the identification of compounds potent (EC50 < 10 nM) against all strains of P. falciparum tested, including the drug-resistant parasite strains K1, W2, and TM90-C2B. Evaluation of efficacy of several compounds in vivo identified two compounds that reduced parasitemia by >75 % in mice 6 days post-exposure following a single 50 mg/kg oral dose. Resistance acquisition experiments with a selected dihydropyridine led to the identification of a single mutation conveying resistance in the gene encoding for Plasmodium falciparum multi-drug resistance protein 1 (PfMDR1). The same dihydropyridine possessed transmission blocking activity. The DHPs have the potential for the development of novel antimalarial drug candidates.

10.
Malar J ; 12: 424, 2013 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-24237770

RESUMO

BACKGROUND: Recent whole cell in vitro screening campaigns identified thousands of compounds that are active against asexual blood stages of Plasmodium falciparum at submicromolar concentrations. These hits have been made available to the public, providing many novel chemical starting points for anti-malarial drug discovery programmes. Knowing which of these hits are fast-acting compounds is of great interest. Firstly, a fast action will ensure rapid relief of symptoms for the patient. Secondly, by rapidly reducing the parasitaemia, this could minimize the occurrence of mutations leading to new drug resistance mechanisms.An in vitro assay that provides information about the speed of action of test compounds has been developed by researchers at GlaxoSmithKline (GSK) in Spain. This assay also provides an in vitro measure for the ratio between parasitaemia at the onset of drug treatment and after one intra-erythrocytic cycle (parasite reduction ratio, PRR). Both parameters are needed to determine in vitro killing rates of anti-malarial compounds. A drawback of the killing rate assay is that it takes a month to obtain first results. METHODS: The approach described in the present study is focused only on the speed of action of anti-malarials. This has the advantage that initial results can be achieved within 4-7 working days, which helps to distinguish between fast and slow-acting compounds relatively quickly. It is expected that this new assay can be used as a filter in the early drug discovery phase, which will reduce the number of compounds progressing to secondary, more time-consuming assays like the killing rate assay. RESULTS: The speed of action of a selection of seven anti-malarial compounds was measured with two independent experimental procedures using modifications of the standard [3H]hypoxanthine incorporation assay. Depending on the outcome of both assays, the tested compounds were classified as either fast or non-fast-acting. CONCLUSION: The results obtained for the anti-malarials chloroquine, artesunate, atovaquone, and pyrimethamine are consistent with previous observations, suggesting the methodology is a valid way to rapidly identify fast-acting anti-malarial compounds. Another advantage of the approach is its ability to discriminate between static or cidal compound effects.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária/métodos , Fatores de Tempo
11.
Bioorg Med Chem Lett ; 23(16): 4705-12, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23810497

RESUMO

Piperidine ether and aryl piperazine hydantoins are reported as potent inhibitors of MMP13. A medicinal chemistry campaign focused on replacing the reverse hydroxamate zinc binding group associated with historical inhibitors with a hydantoin zinc binding group then optimising MMP13 potency, solubility and DMPK properties whilst maintaining good selectivity over MMP14. A number of high quality candidates were progressed and following rat and dog safety evaluation, AZD6605 (3m) was identified as a candidate drug.


Assuntos
Descoberta de Drogas , Hidantoínas/síntese química , Hidantoínas/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Animais , Domínio Catalítico , Cristalografia por Raios X , Cães , Ativação Enzimática/efeitos dos fármacos , Hidantoínas/química , Concentração Inibidora 50 , Inibidores de Metaloproteinases de Matriz/química , Modelos Moleculares , Ratos , Solubilidade , Sulfonamidas/química
12.
Bioorg Med Chem Lett ; 22(3): 1299-307, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22243961

RESUMO

A series of new boron-containing benzoxaborole compounds was designed and synthesized for a continuing structure-activity relationship (SAR) investigation to assess the antimalarial activity changes derived from side-chain structural variation, substituent modification on the benzene ring and removal of boron from five-membered oxaborole ring. This SAR study demonstrated that boron is required for the antimalarial activity, and discovered that three fluoro-substituted 7-(2-carboxyethyl)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles (9, 14 and 20) have excellent potencies (IC(50) 0.026-0.209 µM) against Plasmodium falciparum.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Compostos de Boro/síntese química , Compostos de Boro/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Flúor/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/toxicidade , Compostos de Boro/química , Compostos de Boro/toxicidade , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Células Jurkat , Estrutura Molecular , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 22(12): 3895-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22608963

RESUMO

A novel N-aryl piperazine-1-carboxamide series of human CCR2 chemokine receptor antagonists was discovered. Early analogues were potent at CCR2 but also inhibited the hERG cardiac ion channel. Structural modifications which decreased lipophilicity and basicity resulted in the identification of a sub-series with an improved margin over hERG. The pharmacological and pharmacokinetic properties of the lead compound from this series, N-(3,4-dichlorophenyl)-4-[(2R)-4-isopropylpiperazine-2-carbonyl]piperazine-1-carboxamide, are described.


Assuntos
Anti-Inflamatórios/síntese química , Piperazinas/síntese química , Receptores CCR2/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Cães , Desenho de Fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Inflamação/tratamento farmacológico , Piperazinas/farmacocinética , Piperazinas/farmacologia , Ligação Proteica , Ratos , Receptores CCR2/metabolismo
14.
ChemMedChem ; 17(22): e202200393, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36129427

RESUMO

New antimalarial treatments with novel mechanism of action are needed to tackle Plasmodium falciparum infections that are resistant to first-line therapeutics. Here we report the exploration of MMV692140 (2) from the Pathogen Box, a collection of 400 compounds that was made available by Medicines for Malaria Venture (MMV) in 2015. Compound 2 was profiled in in vitro models of malaria and was found to be active against multiple life-cycle stages of Plasmodium parasites. The mode of resistance, and putatively its mode of action, was identified as Plasmodium falciparum translation elongation factor 2 (PfeEF2), which is responsible for the GTP-dependent translocation of the ribosome along mRNA. The compound maintains activity against a series of drug-resistant parasite strains. The structural motif of the tetrahydroquinoline (2) was explored in a chemistry program with its structure-activity relationships examined, resulting in the identification of an analog with 30-fold improvement of antimalarial asexual blood stage potency.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
15.
Bioorg Med Chem Lett ; 21(2): 644-51, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21195617

RESUMO

A series of boron-containing benzoxaborole compounds was designed and synthesized for a structure-activity relationship investigation surrounding 7-(HOOCCH(2)CH(2))-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (1) with the goal of discovering a new antimalarial treatment. Compound 1 demonstrates the best potency (IC(50)=26nM) against Plasmodium falciparum and has good drug-like properties, with low molecular weight (206.00), low ClogP (0.86) and high water solubility (750µg/mL at pH 7).


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Compostos de Boro/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
16.
J Med Chem ; 63(9): 4929-4956, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32248693

RESUMO

Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.


Assuntos
Antimaláricos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pirróis/uso terapêutico , Animais , Antimaláricos/síntese química , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Linhagem Celular Tumoral , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Cães , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Feminino , Humanos , Masculino , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/enzimologia , Ligação Proteica , Pirróis/síntese química , Pirróis/metabolismo , Pirróis/farmacocinética , Ratos , Relação Estrutura-Atividade
17.
ChemMedChem ; 14(14): 1329-1335, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31188540

RESUMO

Herein we describe the optimization of a phenotypic hit against Plasmodium falciparum based on an aminoacetamide scaffold. This led to N-(3-chloro-4-fluorophenyl)-2-methyl-2-{[4-methyl-3-(morpholinosulfonyl)phenyl]amino}propanamide (compound 28) with low-nanomolar activity against the intraerythrocytic stages of the malaria parasite, and which was found to be inactive in a mammalian cell counter-screen up to 25 µm. Inhibition of gametes in the dual gamete activation assay suggests that this family of compounds may also have transmission blocking capabilities. Whilst we were unable to optimize the aqueous solubility and microsomal stability to a point at which the aminoacetamides would be suitable for in vivo pharmacokinetic and efficacy studies, compound 28 displayed excellent antimalarial potency and selectivity; it could therefore serve as a suitable chemical tool for drug target identification.


Assuntos
Acetamidas/farmacologia , Antimaláricos/farmacologia , Acetamidas/síntese química , Acetamidas/farmacocinética , Animais , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade
18.
ACS Omega ; 3(8): 9227-9240, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30197997

RESUMO

Malaria kills nearly 0.5 million people yearly and impacts the lives of those living in over 90 countries where it is endemic. The current treatment programs are threatened by increasing drug resistance. Dihydroorotate dehydrogenase (DHODH) is now clinically validated as a target for antimalarial drug discovery as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. We discovered a related isoxazolopyrimidine series in a phenotypic screen, later determining that it targeted DHODH. To determine if the isoxazolopyrimidines could yield a drug candidate, we initiated hit-to-lead medicinal chemistry. Several potent analogues were identified, including a compound that showed in vivo antimalarial activity. The isoxazolopyrimidines were more rapidly metabolized than their triazolopyrimidine counterparts, and the pharmacokinetic data were not consistent with the goal of a single-dose treatment for malaria.

19.
J Med Chem ; 59(21): 9672-9685, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27631715

RESUMO

The antiplasmodial activity, DMPK properties, and efficacy of a series of quinoline-4-carboxamides are described. This series was identified from a phenotypic screen against the blood stage of Plasmodium falciparum (3D7) and displayed moderate potency but with suboptimal physicochemical properties and poor microsomal stability. The screening hit (1, EC50 = 120 nM) was optimized to lead molecules with low nanomolar in vitro potency. Improvement of the pharmacokinetic profile led to several compounds showing excellent oral efficacy in the P. berghei malaria mouse model with ED90 values below 1 mg/kg when dosed orally for 4 days. The favorable potency, selectivity, DMPK properties, and efficacy coupled with a novel mechanism of action, inhibition of translation elongation factor 2 (PfEF2), led to progression of 2 (DDD107498) to preclinical development.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Modelos Animais de Doenças , Camundongos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
20.
J Med Chem ; 59(11): 5416-31, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27127993

RESUMO

Malaria persists as one of the most devastating global infectious diseases. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) has been identified as a new malaria drug target, and a triazolopyrimidine-based DHODH inhibitor 1 (DSM265) is in clinical development. We sought to identify compounds with higher potency against Plasmodium DHODH while showing greater selectivity toward animal DHODHs. Herein we describe a series of novel triazolopyrimidines wherein the p-SF5-aniline was replaced with substituted 1,2,3,4-tetrahydro-2-naphthyl or 2-indanyl amines. These compounds showed strong species selectivity, and several highly potent tetrahydro-2-naphthyl derivatives were identified. Compounds with halogen substitutions displayed sustained plasma levels after oral dosing in rodents leading to efficacy in the P. falciparum SCID mouse malaria model. These data suggest that tetrahydro-2-naphthyl derivatives have the potential to be efficacious for the treatment of malaria, but due to higher metabolic clearance than 1, they most likely would need to be part of a multidose regimen.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Malária Falciparum/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Triazóis/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA