Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(31): 21260-21269, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39076036

RESUMO

While trans-glyoxal may not be easily observable in astronomical sources through either IR or radioastronomy due to its C2h symmetry, its cis conformer along with the cyc-H2COCO epoxide isomer should be ready targets for astrochemical detection. The present quantum chemical study shows that not only are both molecular isomers strongly polar, they also have notable IR features and low isomerisation energies of 4.1 kcal mol-1 and 10.7 kcal mol-1, respectively. These three isomers along with two other C2O2H2 isomers have had their full set of fundamental vibrational frequencies and spectroscopic constants characterised herein. These isomers have previously been shown to occur in simulated astrophysical ices making them worthy targets of astronomical search. Furthermore, the hybrid quartic force field (QFF) approach utilized herein to produce the needed spectral data has a mean absolute percent error compared to the experimentally-available, gas phase fundamental vibrational frequencies of 0.6% and rotational constants to better than 0.1%. The hybrid QFF is defined from explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples level [CCSD(T)-F12b] including core electron correlation and a canonical CCSD(T) relativity correction for the harmonic (quadratic) terms in the QFF and simple CCSD(T)-F12b/cc-pVDZ energies for the cubic and quartic terms, the so-called "F12-TcCR+DZ QFF." This method is producing spectroscopically-accurate predictions for both fundamental vibrational frequencies and principal spectroscopic constants. Hence, the values computed in this work should be notably accurate and, hence, exceptionally useful to the spectroscopy and astrochemistry communities.

2.
J Phys Chem A ; 128(11): 2150-2161, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38466814

RESUMO

Highly accurate anharmonic vibrational frequencies of electronically excited states are not as easily computed as their ground electronic state counterparts, but recently developed approximate triple excited state methods may be changing that. One emerging excited state method is equation of motion coupled cluster theory at the singles and doubles level with perturbative triples computed via the (a)* formalism, EOMEE-CCSD(T)(a)*. One of the most employed means for the ready computation of vibrational anharmonic frequencies for ground electronic states is second-order vibrational perturbation theory (VPT2), a theory based on quartic force fields (QFFs),fourth-order Taylor series expansions of the potential portion of the internuclear Watson Hamiltonian. The combination of these two is herein benchmarked for its performance for use as a means of computing rovibrational spectra of electronically excited states. Specifically, the EOMEE-CCSD(T)(a)* approach employing a complete basis set extrapolation along with core electron inclusion and relativity (the so-called "CcCR" approach) defining the QFF produces anharmonic fundamental vibrational frequencies within 2.83%, on the average, of reported gas-phase experimentally assigned values for the test set including the A~1A″ states of HCF, HCCl, HSiF, HNO, and HPO. However, some states have exceptional accuracy in the fundamentals, most notably for ν2 of A~1A″ HCCl in which the CcCR QFF value is within 1.8 cm-1 at 927.9 cm-1 (or 0.2%) of the experiment. Additionally, this approach produces rotational constants to, on the absolute average, within 0.41% of available experimental data, showcasing notable accuracy in the computation of rovibronic spectral data. Furthermore, utilizing a hybrid approach composed of harmonic CcCR force constants along with a set of simple EOMEE-CCSD(T)(a)*/aug-cc-pVQZ QFF cubic and quartic force constants is faster than using pure CcCR and better represents those modes that suffer from numerical instability in the anharmonic portion of the QFF, implying that this so-called "CcCR + QZ" QFF approach may be the best for future applications. Finally, complete, rovibrational spectral data are provided for A~1A2 :CCH2, a molecule of potential astrochemical interest, in order to aid in its potential future experimental rovibronic characterization.

3.
J Phys Chem A ; 125(49): 10532-10540, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34846883

RESUMO

The F12-TZ-cCR quartic force field (QFF) methodology, defined here as CCSD(T)-F12b/cc-pCVTZ-F12 with further corrections for relativity, is introduced as a cheaper and even more accurate alternative to more costly composite QFF methods like those containing complete basis set extrapolations within canonical coupled cluster theory. F12-TZ-cCR QFFs produce B0 and C0 vibrationally averaged principal rotational constants within 7.5 MHz of gas-phase experimental values for tetraatomic and larger molecules, offering higher accuracy in these constants than the previous composite methods. In addition, F12-TZ-cCR offers an order of magnitude decrease in the computational cost of highly accurate QFF methodologies accompanying this increase in accuracy. An additional order of magnitude in cost reduction is achieved in the F12-DZ-cCR method, while also matching the accuracy of the traditional composite method's B0 and C0 constants. Finally, F12-DZ and F12-TZ are benchmarked on the same test set, revealing that both methods can provide anharmonic vibrational frequencies that are comparable in accuracy to all three of the more expensive methodologies, although their rotational constants lag behind. Hence, the present work demonstrates that highly accurate theoretical rovibrational spectral data can be obtained for a fraction of the cost of conventional QFF methodologies, extending the applicability of QFFs to larger molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA