Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genes Dev ; 27(1): 18-23, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307865

RESUMO

Some cancers use alternative lengthening of telomeres (ALT), a mechanism whereby new telomeric DNA is synthesized from a DNA template. To determine whether normal mammalian tissues have ALT activity, we generated a mouse strain containing a DNA tag in a single telomere. We found that the tagged telomere was copied by other telomeres in somatic tissues but not the germline. The tagged telomere was also copied by other telomeres when introgressed into CAST/EiJ mice, which have telomeres more similar in length to those of humans. We conclude that ALT activity occurs in normal mouse somatic tissues.


Assuntos
Queratinócitos/fisiologia , Homeostase do Telômero/genética , Animais , Linfócitos B/citologia , Cruzamento , Linhagem Celular , Quimera/genética , Cromossomos/genética , Cromossomos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Técnicas de Genotipagem , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Espermatócitos/citologia , Espermatócitos/fisiologia , Coloração e Rotulagem , Linfócitos T/citologia
2.
Brain ; 129(Pt 4): 887-98, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16467389

RESUMO

Rett syndrome (RTT) is a debilitating neurological condition associated with mutations in the X-linked MECP2 gene, where apparently normal development is seen prior to the onset of cognitive and motor deterioration at 6-18 months of life. A targeted deletion of the methyl-CpG-binding domain (MBD) coding region and disruption of mRNA splicing was introduced in the mouse, resulting in a complete loss of Mecp2 transcripts and protein. Postnatal comparison of XO and XY mutant Mecp2 allele-containing null mice revealed similar effects on mouse growth and viability, suggesting that phenotypic manifestations are not modulated by the Y-chromosome. Further assessment of Mecp2-null XY mice highlighted cerebellar and hippocampal/amygdala-based learning deficits in addition to reduced motor dexterity and decreased anxiety levels. Brain tissues containing the hippocampal formation of XY Mecp2-null mice also displayed significant changes in genetic activity, which are related to the severity of the mutant phenotype.


Assuntos
Hipocampo/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , Síndrome de Rett/metabolismo , Animais , Ansiedade , Condicionamento Clássico , Progressão da Doença , Medo , Regulação da Expressão Gênica , Marcação de Genes/métodos , Aprendizagem , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Atividade Motora , Fenótipo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Síndrome de Rett/psicologia , Cromossomo Y/fisiologia
4.
Eur J Cell Biol ; 89(7): 489-98, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20223554

RESUMO

Previous studies have shown that the overexpression of tropomyosins leads to isoform-specific alterations in the morphology of subcellular compartments in neuronal cells. Here we have examined the role of the most abundant set of isoforms from the gamma-Tm gene by knocking out the alternatively spliced C-terminal exon 9d. Despite the widespread location of exon 9d-containing isoforms, mice were healthy and viable. Compensation by products containing the C-terminal exon 9c was seen in the adult brain. While neurons from these mice show a mild phenotype at one day in culture, neurons revealed a significant morphological alteration with an increase in the branching of dendrites and axons after four days in culture. Our data suggest that this effect is mediated via altered stability of actin filaments in the growth cones. We conclude that exon 9d-containing isoforms are not essential for survival of neuronal cells and that isoform choice from the gamma-Tm gene is flexible in the brain. Although functional redundancy does not exist between tropomyosin genes, these results suggest that significant redundancy exists between products from the same gene.


Assuntos
Neurogênese/fisiologia , Tropomiosina/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Axônios/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Camundongos , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tropomiosina/genética
5.
Genomics ; 85(4): 441-52, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15780747

RESUMO

Four different transcripts of the Mecp2 gene can be distinguished by the length of the 3' untranslated region generated by usage of alternative polyadenylation sites. In situ hybridization analyses encompassing embryonic to 20-week postnatal age showed that transcripts are expressed in the central nervous system, with a progressive restriction during development culminating in localized strong expression in the cerebral cortex, olfactory bulb, hippocampal formation, and internal granule and Purkinje layer of the cerebellum. Real-time RT-PCR measurements of Mecp2 transcript levels showed variations with mouse age in two distinctive patterns that are unique to the central nervous system and the visceral organs, respectively. The 10-kb mRNA is the predominant form expressed in the brain in contrast to the shorter species expressed in the lung and liver. The developmental profile of Mecp2 mRNA highlights a potential tissue-specific function of the 3'UTR in the regulation of MeCP2 protein synthesis in response to the age-specific requirement of MeCP2 function during the life of the mouse.


Assuntos
Regiões 3' não Traduzidas/genética , Encéfalo/embriologia , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , Animais , Sequência de Bases , Encéfalo/crescimento & desenvolvimento , Química Encefálica , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Hibridização In Situ , Proteína 2 de Ligação a Metil-CpG , Camundongos , Dados de Sequência Molecular , Poliadenilação , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Síndrome de Rett/genética , Distribuição Tecidual , Transcrição Gênica , Vísceras/embriologia , Vísceras/crescimento & desenvolvimento
6.
Hum Mol Genet ; 14(13): 1851-61, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15888476

RESUMO

Rett syndrome (RTT) is an X-linked disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. The pattern of X-chromosome inactivation (XCI) is thought to play a role in phenotypic severity. In the present study, patterns of XCI were assessed by lacZ staining of embryos and adult brains of mice heterozygous for a X-linked Hmgcr-nls-lacZ transgene on a mutant mouse model of RTT. We found that there was no difference between the lacZ staining patterns in the brain of wild-type and heterozygous mutant embryos at embryonic day 9.5 (E9.5) suggesting that Mecp2 has no effect on the primary pattern of XCI. At 20 weeks of age, there was no significant difference between XCI patterns in the Purkinje cells in the cerebellum of heterozygous mutant and wild-type mice when the mutant allele was inherited from the mother. However, when the mutant allele was paternally inherited, a significant difference was detected. Thus, parental origin of the mutation may have a bearing on phenotype through XCI patterns. An estimation of the Purkinje cell precursor number based on XCI mosaicism revealed that, when the mutation was paternally inherited, the precursor number was less than that in the wild-type mice. Therefore, it is likely that the number of precursor cells allocated to the Purkinje cell lineage is affected by a paternally inherited mutation in Mecp2. We also observed that the pattern of XCI in cultured fibroblasts was significantly correlated with patterns in the Purkinje cells in mutant animals but not in wild-type mice.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Mecanismo Genético de Compensação de Dose , Mutação , Células de Purkinje/metabolismo , Proteínas Repressoras/genética , Síndrome de Rett/genética , Cromossomo X/genética , Animais , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patologia , Proteínas Cromossômicas não Histona/biossíntese , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Proteína 2 de Ligação a Metil-CpG , Camundongos , Camundongos Mutantes Neurológicos , Células de Purkinje/patologia , Proteínas Repressoras/biossíntese , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Cromossomo X/metabolismo
7.
Cytokine ; 21(3): 105-19, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12697149

RESUMO

Sequence data for type I interferons (IFNs) have previously only been available for birds and eutherian ('placental') mammals, but not for the other two groups of extant mammals, the marsupials and monotremes. This has left a large gap in our knowledge of the evolutionary and functional relationships of what is a complex gene family in eutherians. In this study, a PCR-based survey of type I IFN genes from a marsupial, the tammar wallaby (Macropus eugenii), and a monotreme, the short-beaked echidna (Tachyglossus aculeatus), was conducted. Along with Southern blot and phylogenetic analysis, this revealed a large number of type I IFN genes for the wallaby, rivalling that of eutherians, but relatively few type I IFN genes in the echidna. The wallaby genes include both IFNA and IFNB orthologues, indicating that the gene duplication leading to these subtypes occurred prior to the divergence of marsupials and eutherians some 130 million years ago. Results from this study support the idea that the expansion of type I IFN gene complexity in mammals coincides with a concomitant expansion in the functionality of these molecules. For example, this expansion in complexity may have, at least partially, facilitated the evolution of viviparity in marsupials and eutherians. Other evolutionary aspects of these sequences are also discussed.


Assuntos
Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Marsupiais/metabolismo , Monotremados/metabolismo , Animais , Evolução Biológica , Southern Blotting , Clonagem Molecular , Cisteína/metabolismo , DNA/metabolismo , Macropodidae/metabolismo , Filogenia , Reação em Cadeia da Polimerase
8.
Dev Biol ; 264(1): 1-14, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14623228

RESUMO

The use of embryonic stem (ES) cells for generating healthy tissues has the potential to revolutionize therapies for human disease or injury, for which there are currently no effective treatments. Strategies for manipulating stem cell differentiation should be based on knowledge of the mechanisms by which lineage decisions are made during early embryogenesis. Here, we review current research into the factors influencing lineage differentiation in the mouse embryo and the application of this knowledge to in vitro differentiation of ES cells. In the mouse embryo, specification of tissue lineages requires cell-cell interactions that are influenced by coordinated cell migration and cellular neighborhood mediated by the key WNT, FGF, and TGFbeta signaling pathways. Mimicking the cellular interactions of the embryo by providing appropriate signaling molecules in culture has enabled the differentiation of ES cells to be directed predominately toward particular lineages. Multistep strategies incorporating the provision of soluble factors known to influence lineage choices in the embryo, coculture with other cells or tissues, genetic modification, and selection for desirable cell types have allowed the production of ES cell derivatives that produce beneficial effects in animal models. Increasing the efficiency of this process can only result from a better understanding of the molecular control of cell lineage determination in the embryo.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Biomarcadores , Humanos , Camundongos , Transdução de Sinais/fisiologia , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA