Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 148(19): 194501, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307254

RESUMO

In situ Raman and Brillouin light scattering techniques were used to study thermally induced high-density amorphous (HDA) to low-density amorphous (LDA) transition in silica glass densified in hot compression (up to 8 GPa at 1100 °C). Hot-compressed silica samples are shown to retain structural and mechanical stability through 600 °C or greater, with reduced sensitivity in elastic response to temperature as compared with pristine silica glass. Given sufficient thermal energy to overcome the energy barrier, the compacted structure of the HDA silica reverts back to the LDA state. The onset temperature for the HDA to LDA transition depends on the degree of densification during hot compression, commencing at lower temperatures for samples with higher density, but all finishing within a temperature range of 250-300 °C. Our studies show that the HDA to LDA transition at high temperatures in hot-compressed samples is different from the gradual changes starting from room temperature in cold-compressed silica glass, indicating greater structural homogeneity achieved by hot compression. Furthermore, the structure and properties of hot-compressed silica glass change continuously during the thermally induced HDA to LDA transition, in contrast to the abrupt and first-order-like polyamorphic transitions in amorphous ice. Different HDA to LDA transition mechanisms in amorphous silica and amorphous ice are explained by their different energy landscapes.

2.
Nature ; 480(7375): 79-82, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22129728

RESUMO

Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.


Assuntos
Atmosfera/química , Planeta Terra , Erupções Vulcânicas , Oxirredução
3.
Rapid Commun Mass Spectrom ; 33(20): 1589-1597, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31237970

RESUMO

RATIONALE: High-precision determination of silicon isotopes can be achieved by in situ multi-collector secondary ion mass spectrometry (MS-SIMS). The accuracy of the analyses is, however, sensitive to ion yields and instrumental mass fractionations (IMFs) induced by the analytical procedure. These effects vary from one instrument to another, with the analytical settings, and with the composition and nature of the sample. Because ion yields and IMF effects are not predictable and rely on empirical calibrations, high-accuracy analyses require suitable sets of standards. METHODS: Here, we document calibrations of ion yields and matrix effects in a set of 23 olivine standards and 3 low-Ca pyroxene for silicon isotopic measurements in both polarities using Cameca IMS 1270 E7 and IMS 1280 HR2 ion probes set with the cesium (Cs) or radiofrequency (RF) source. RESULTS: Silicon ion yields show (i) strong variations with the chemical composition, and (ii) an opposite behavior between the secondary positive and negative polarities. The magnitude of IMF along the fayalite-forsterite (olivine) series shows a complex behavior, increasing overall by ≈7‰ (secondary positive) and ≈15‰ (secondary negative) with increasing olivine Mg#. A drastic change in olivine IMF occurs at Mg# ≈ 70 in both polarities. The magnitude of IMF for low-Ca pyroxene from Mg# = 70-100 is almost constant in both polarities, i.e. ≈0.1‰ in secondary positive and ≈0.15‰ in secondary negative. The analytical uncertainties on individual analyses were ± 0.05-0.15‰ (2 S.E.) with both sources, and the external errors for each standard material were ≈ ±0.05-0.5‰ (2 S.E.) with the Cs source and ≈ ±0.03-0.15‰ (2 S.E.) with the RF source. CONCLUSIONS: The IMF effect of Si isotopes in silicates shows complex behaviors that vary with the chemistry and the settings of the instrument. We developed a suitable set of standards in order to perform high-accuracy in situ measurements of Si isotopes in olivine and low-Ca pyroxene characterized by varying chemical compositions by MC-SIMS.

4.
Nature ; 450(7170): 709-11, 2007 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18046408

RESUMO

Understanding the geochemical behaviour of the siderophile elements--those tending to form alloys with iron in natural environments--is important in the search for a deep-mantle chemical 'fingerprint' in upper mantle rocks, and also in the evaluation of models of large-scale differentiation of the Earth and terrestrial planets. These elements are highly concentrated in the core relative to the silicate mantle, but their concentrations in upper mantle rocks are higher than predicted by most core-formation models. It has been suggested that mixing of outer-core material back into the mantle following core formation may be responsible for the siderophile element ratios observed in upper mantle rocks. Such re-mixing has been attributed to an unspecified metal-silicate interaction in the reactive D'' layer just above the core-mantle boundary. The siderophile elements are excellent candidates as indicators of an outer-core contribution to the mantle, but the nature and existence of possible core-mantle interactions is controversial. In light of the recent findings that grain-boundary diffusion of oxygen through a dry intergranular medium may be effective over geologically significant length scales and that grain boundaries can be primary storage sites for incompatible lithophile elements, the question arises as to whether siderophile elements might exhibit similar (or greater) grain-boundary mobility. Here we report experimental results from a study of grain-boundary diffusion of siderophile elements through polycrystalline MgO that were obtained by quantifying the extent of alloy formation between initially pure metals separated by approximately 1 mm of polycrystalline MgO. Grain-boundary diffusion resulted in significant alloying of sink and source particles, enabling calculation of grain-boundary fluxes. Our computed diffusivities were high enough to allow transport of a number of siderophile elements over geologically significant length scales (tens of kilometres) over the age of the Earth. This finding establishes grain-boundary diffusion as a potential fast pathway for chemical communication between the core and mantle.

5.
Nature ; 449(7160): 299-304, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17882213

RESUMO

The solid Earth is widely believed to have lost its original gases through a combination of early catastrophic release and regulated output over geologic time. In principle, the abundance of 40Ar in the atmosphere represents the time-integrated loss of gases from the interior, thought to occur through partial melting in the mantle followed by melt ascent to the surface and gas exsolution. Here we present data that reveal two major difficulties with this simple magmatic degassing scenario--argon seems to be compatible in the major phases of the terrestrial planets, and argon diffusion in these phases is slow at upper-mantle conditions. These results challenge the common belief that the upper mantle is nearly degassed of 40Ar, and they call into question the suitability of 40Ar as a monitor of planetary degassing. An alternative to magmatism is needed to release argon to the atmosphere, with one possibility being hydration of oceanic lithosphere consisting of relatively argon-rich olivine and orthopyroxene.

6.
Life (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37763303

RESUMO

The origin of life on earth requires the synthesis of protobiopolymers in realistic geologic environments along strictly abiotic pathways that rely on inorganic phases (such as minerals) instead of cellular machinery to promote condensation. One such class of polymer central to biochemistry is the polynucleotides, and oligomerization of activated ribonucleotides has been widely studied. Nonetheless, the range of laboratory conditions tested to date is limited and the impact of realistic early Earth conditions on condensation reactions remains unexplored. Here, we investigate the potential for a variety of minerals to enhance oligomerization using ribonucleotide monomers as one example to model condensation under plausible planetary conditions. The results show that several minerals differing in both structure and composition enhance oligomerization. Sulfide minerals yielded oligomers of comparable lengths to those formed in the presence of clays, with galena being the most effective, yielding oligonucleotides up to six bases long. Montmorillonite continues to excel beyond other clays. Chemical pretreatment of the clay was not required, though maximum oligomer lengths decreased from ~11 to 6 bases. These results demonstrate the diversity of mineral phases that can impact condensation reactions and highlight the need for greater consideration of environmental context when assessing prebiotic synthesis and the origin of life.

7.
Proc Natl Acad Sci U S A ; 105(25): 8537-41, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18559860

RESUMO

The importance of carbon in Earth's mantle greatly exceeds its modest abundance of approximately 1,000-4,000 ppm. Carbon is a constituent of key terrestrial volatiles (CO, CO(2), CH(4)), it forms diamonds, and it may also contribute to the bulk electrical properties of the silicate Earth. In contrast to that of the mantle, the carbon content of Earth's metallic core may be quite high ( approximately 5 wt %), raising the possibility that the core has supplied carbon to the mantle over geologic time. The plausibility of this process depends in part upon the mobility of carbon atoms in the solid mantle. Grain boundaries of mantle minerals could represent fast pathways for transport as well as localized sites for enrichment and storage of carbon. Here, we report the results of an experimental study of grain-boundary diffusion of carbon through polycrystalline periclase (MgO) and olivine ([Mg,Fe](2)SiO(4)) that were obtained by determining the extent of solid solution formation between a graphite source and a metal sink (Ni or Fe) separated by the polycrystalline materials. Experimental materials were annealed at 1,373-1,773 K and 1.5-2.5 GPa pressure. Calculated diffusivities, which range up to 10(-11) m(2).s(-1), are fast enough to allow transport over geologically significant length scales ( approximately 10 km) over the age of the Earth. Mobility and enrichment of carbon on grain boundaries may also explain the high electrical conductivity of upper mantle rocks, and could result in the formation of C-H-O volatiles through interactions of core-derived C with recycled H(2)O in subduction zones.

8.
J Phys Condens Matter ; 31(45): 455402, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31342917

RESUMO

Density-functional theory was used to investigate the effect of atomic impurities on the structural and vibrational properties of zircon (tetragonal ZrSiO4). Atomic impurities considered include radioactive elements U and Th, as well as Hf, Sn, and Ti, substituted on the Zr-site. Using the supercell approach to model a range of substitutional concentrations, impurities were found to cause changes in the volume of the host lattice. This effect was shown to be partially equivalent to the application of a lattice strain. This quantum-based finding is in excellent agreement with the heuristic lattice-strain model traditionally employed in the geosciences to account for the compatibility of impurities in host lattices. Vibrational properties of substituted zircon were also investigated in order to provide a quantum mechanical understanding of Raman spectroscopy measurements on natural zircon. The computational analysis reproduces existing experimental data reported for uranium-substituted zircon and provides general predictive trends for other impurities including Th, Hf, Sn, and Ti. The insights gained by this study regarding the Raman signature of the presence of substitutional impurities set the groundwork for future study of the more substantial lattice disruptions that characterize radiation damage due to alpha decay in zircon.

9.
Astrobiology ; 15(7): 509-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26154881

RESUMO

Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.


Assuntos
Fontes Hidrotermais/química , Ferro/química , Oligorribonucleotídeos/síntese química , RNA/síntese química , Ribonucleotídeos/química , Enxofre/química , Monofosfato de Adenosina/química , Bentonita/química , Catálise , Dimerização , Evolução Química , Guanosina Monofosfato/química , Concentração de Íons de Hidrogênio , Imidazóis/química , Oceanos e Mares , Origem da Vida , Uridina Monofosfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA