Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Exp Biol ; 224(Pt 5)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33504585

RESUMO

Cranial morphology in lepidosaurs is highly disparate and characterised by the frequent loss or reduction of bony elements. In varanids and geckos, the loss of the postorbital bar is associated with changes in skull shape, but the mechanical principles underlying this variation remain poorly understood. Here, we sought to determine how the overall cranial architecture and the presence of the postorbital bar relate to the loading and deformation of the cranial bones during biting in lepidosaurs. Using computer-based simulation techniques, we compared cranial biomechanics in the varanid Varanus niloticus and the teiid Salvator merianae, two large, active foragers. The overall strain magnitude and distribution across the cranium were similar in the two species, despite lower strain gradients in V. niloticus In S. merianae, the postorbital bar is important for resistance of the cranium to feeding loads. The postorbital ligament, which in varanids partially replaces the postorbital bar, does not affect bone strain. Our results suggest that the reduction of the postorbital bar impaired neither biting performance nor the structural resistance of the cranium to feeding loads in V. niloticus Differences in bone strain between the two species might reflect demands imposed by feeding and non-feeding functions on cranial shape. Beyond variation in cranial bone strain related to species-specific morphological differences, our results reveal that similar mechanical behaviour is shared by lizards with distinct cranial shapes. Contrary to the situation in mammals, the morphology of the circumorbital region, calvaria and palate appears to be important for withstanding high feeding loads in these lizards.


Assuntos
Lagartos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Crânio/anatomia & histologia , Especificidade da Espécie
2.
Mol Cell ; 51(1): 57-67, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23791785

RESUMO

Class I histone deacetylases (HDAC1, HDAC2, and HDAC3) are recruited by cognate corepressor proteins into specific transcriptional repression complexes that target HDAC activity to chromatin resulting in chromatin condensation and transcriptional silencing. We previously reported the structure of HDAC3 in complex with the SMRT corepressor. This structure revealed the presence of inositol-tetraphosphate [Ins(1,4,5,6)P4] at the interface of the two proteins. It was previously unclear whether the role of Ins(1,4,5,6)P4 is to act as a structural cofactor or a regulator of HDAC3 activity. Here we report the structure of HDAC1 in complex with MTA1 from the NuRD complex. The ELM2-SANT domains from MTA1 wrap completely around HDAC1 occupying both sides of the active site such that the adjacent BAH domain is ideally positioned to recruit nucleosomes to the active site of the enzyme. Functional assays of both the HDAC1 and HDAC3 complexes reveal that Ins(1,4,5,6)P4 is a bona fide conserved regulator of class I HDAC complexes.


Assuntos
Histona Desacetilase 1/química , Histona Desacetilases/química , Fosfatos de Inositol/fisiologia , Proteínas Repressoras/química , Sequência de Aminoácidos , Dimerização , Células HEK293 , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/fisiologia , Histona Desacetilases/metabolismo , Histona Desacetilases/fisiologia , Humanos , Fosfatos de Inositol/química , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Especificidade por Substrato , Transativadores
3.
Nature ; 481(7381): 335-40, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22230954

RESUMO

Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.


Assuntos
Histona Desacetilases/química , Histona Desacetilases/metabolismo , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Correpressor 2 de Receptor Nuclear/química , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Humanos , Fosfatos de Inositol/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Terapia de Alvo Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Proc Biol Sci ; 284(1848)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179518

RESUMO

Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution.


Assuntos
Evolução Biológica , Cabeça/anatomia & histologia , Insetos/anatomia & histologia , Filogenia , Animais , Fenômenos Biomecânicos , Insetos/classificação
5.
J Med Genet ; 53(5): 330-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769062

RESUMO

BACKGROUND: The combination of developmental delay, facial characteristics, hearing loss and abnormal fat distribution in the distal limbs is known as Pierpont syndrome. The aim of the present study was to detect and study the cause of Pierpont syndrome. METHODS: We used whole-exome sequencing to analyse four unrelated individuals with Pierpont syndrome, and Sanger sequencing in two other unrelated affected individuals. Expression of mRNA of the wild-type candidate gene was analysed in human postmortem brain specimens, adipose tissue, muscle and liver. Expression of RNA in lymphocytes in patients and controls was additionally analysed. The variant protein was expressed in, and purified from, HEK293 cells to assess its effect on protein folding and function. RESULTS: We identified a single heterozygous missense variant, c.1337A>G (p.Tyr446Cys), in transducin ß-like 1 X-linked receptor 1 (TBL1XR1) as disease-causing in all patients. TBL1XR1 mRNA expression was demonstrated in pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. mRNA expression is lower in lymphocytes of two patients compared with the four controls. The mutant TBL1XR1 protein assembled correctly into the nuclear receptor corepressor (NCoR)/ silencing mediator for retinoid and thyroid receptors (SMRT) complex, suggesting a dominant-negative mechanism. This contrasts with loss-of-function germline TBL1XR1 deletions and other TBL1XR1 mutations that have been implicated in autism. However, autism is not present in individuals with Pierpont syndrome. CONCLUSIONS: This study identifies a specific TBL1XR1 mutation as the cause of Pierpont syndrome. Deletions and other mutations in TBL1XR1 can cause autism. The marked differences between Pierpont patients with the p.Tyr446Cys mutation and individuals with other mutations and whole gene deletions indicate a specific, but as yet unknown, disease mechanism of the TBL1XR1 p.Tyr446Cys mutation.


Assuntos
Expressão Gênica , Lipomatose/metabolismo , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Adulto , Criança , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Fácies , Feminino , Humanos , Lipomatose/genética , Lipomatose/patologia , Masculino , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Especificidade de Órgãos , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Adulto Jovem
6.
Nucleic Acids Res ; 43(4): 2033-44, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25653165

RESUMO

Recent proteomic studies have identified a novel histone deacetylase complex that is upregulated during mitosis and is associated with cyclin A. This complex is conserved from nematodes to man and contains histone deacetylases 1 and 2, the MIDEAS corepressor protein and a protein called DNTTIP1 whose function was hitherto poorly understood. Here, we report the structures of two domains from DNTTIP1. The amino-terminal region forms a tight dimerization domain with a novel structural fold that interacts with and mediates assembly of the HDAC1:MIDEAS complex. The carboxy-terminal domain of DNTTIP1 has a structure related to the SKI/SNO/DAC domain, despite lacking obvious sequence homology. We show that this domain in DNTTIP1 mediates interaction with both DNA and nucleosomes. Thus, DNTTIP1 acts as a dimeric chromatin binding module in the HDAC1:MIDEAS corepressor complex.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Histona Desacetilase 1/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ciclo Celular , Proteínas Correpressoras/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Histona Desacetilase 2/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição
7.
J Acoust Soc Am ; 141(5): 3030, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28599574

RESUMO

Little is known about speech-related sensory systems and the link to speech in Parkinson's disease (PD). This study investigates auditory and somatosensory acuity and their association to speech in PD, using /s/ and /ʃ/ as speech targets. Ten adults with mild PD and ten age- and gender-matched healthy participants performed three tasks. In the auditory task, participants discriminated three aperiodic sounds acoustically modified from /s/ and /ʃ/ and differing in spectral shapes. In the tactile task, they judged the orientation of a dome-shaped grating probe gently touching their tongue tip. Measures of auditory and tactile acuity were determined based on participants' responses. For the production task, participants read a passage and eight sentences with /s/- and /ʃ/-initial words; acoustic contrast between the two sibilants was measured using difference between the average first spectral moments of /s/ and /ʃ/. The PD participants showed reduced auditory acuity of spectral sibilant contrast and reduced tactile acuity of the tongue tip. For speech production, the PD group showed smaller sibilant contrast in the sentence readings, but the difference was not statistically significant. Correlation analyses showed significant correlations between tactile acuity and sibilant contrast for the PD group, but not for auditory task.


Assuntos
Doença de Parkinson/fisiopatologia , Doença de Parkinson/psicologia , Acústica da Fala , Percepção da Fala , Língua/inervação , Percepção do Tato , Tato , Qualidade da Voz , Estimulação Acústica , Acústica , Idoso , Estudos de Casos e Controles , Discriminação Psicológica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Espectrografia do Som , Inteligibilidade da Fala , Medida da Produção da Fala/métodos
8.
J Biol Chem ; 290(29): 18237-18244, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26055705

RESUMO

Class IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity. However, the molecular mechanism of recruitment to co-repressor proteins has yet to be established. Here we show that a repeated peptide motif present in both SMRT and NCoR is sufficient to mediate specific interaction, with micromolar affinity, with all the class IIa HDACs (HDACs 4, 5, 7, and 9). Mutations in the consensus motif abrogate binding. Mutational analysis of HDAC4 suggests that the peptide interacts in the vicinity of the active site of the enzyme and requires the "closed" conformation of the zinc-binding loop on the surface of the enzyme. Together these findings represent the first insights into the molecular mechanism of recruitment of class IIa HDACs to the SMRT/NCoR repression complexes.


Assuntos
Histona Desacetilases/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Histona Desacetilases/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Correpressor 2 de Receptor Nuclear/química , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo
9.
Anat Rec (Hoboken) ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166443

RESUMO

Invasive gray squirrels (Sciurus carolinensis) have replaced the native red squirrel (Sciurus vulgaris) across much of Great Britain over the last century. Several factors have been proposed to underlie this replacement, but here we investigated the potential for dietary competition in which gray squirrels have better feeding performance than reds and are thus able to extract nutrition from food more efficiently. In this scenario, we hypothesized that red squirrels would show higher stress, strain, and deformation across the skull than gray squirrels. To test our hypotheses, we created finite element models of the skull of a red and a gray squirrel and loaded them to simulate biting at the incisor, at two different gapes, and at the molar. The results showed similar distributions of strains and von Mises stresses in the two species, but higher stress and strain magnitudes in the red squirrel, especially during molar biting. Few differences were seen in stress and strain distributions or magnitudes between the two incisor gapes. A geometric morphometric analysis showed greater deformations in the red squirrel skull at all bites and gapes. These results are consistent with our hypothesis and indicate increased biomechanical performance of the skull in gray squirrels, allowing them to access and process food items more efficiently than red squirrels.

10.
Front Neurol ; 15: 1403050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872829

RESUMO

Background: Laryngeal dystonia is a task-specific focal dystonia of laryngeal muscles that impairs speech and voice production. At present, there is no cure for LD. The most common therapeutic option for patients with LD involves Botulinum neurotoxin injections. Objective: Provide empirical evidence that non-invasive vibro-tactile stimulation (VTS) of the skin over the voice box can provide symptom relief to those affected by LD. Methods: Single-group 11-week randomized controlled trial with a crossover between two dosages (20 min of VTS once or 3 times per week) self-administered in-home in two 4-week blocks. Acute effects of VTS on voice and speech were assessed in-lab at weeks 1, 6 and 11. Participants were randomized to receive either 40 Hz or 100 Hz VTS. Main outcome measures: Primary: smoothed cepstral peak prominence (CPPS) of the voice signal to quantify voice and speech abnormalities, and perceived speech effort (PSE) ranked by participants as a measure of voice effort (scale 1-10). Secondary: number of voice breaks during continuous speech, the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) inventory as a measure of overall disease severity and the Voice Handicap Index 30-item self report. Results: Thirty-nine people with a confirmed diagnosis of adductor-type LD (mean [SD] age, 60.3 [11.3] years; 18 women and 21 men) completed the study. A single application of VTS improved voice quality (median CPPS increase: 0.41 dB, 95% CI [0.20, 0.61]) and/or reduced voice effort (PSE) by at least 30% in up to 57% of participants across the three study visits. Effects lasted from less than 30 min to several days. There was no effect of dosage and no evidence that the acute therapeutic effects of VTS increased or decreased longitudinally over the 11-week study period. Both 100 and 40 Hz VTS induced measurable improvements in voice quality and speech effort. VTS induced an additional benefit to those receiving Botulinum toxin. Participants, not receiving Botulinum treatment also responded to VTS. Conclusion: This study provides the first systematic empirical evidence that the prolonged use of laryngeal VTS can induce repeatable acute improvements in voice quality and reductions of voice effort in LD. Clinical trial registration: ClinicalTrials.gov ID: NCT03746509.

11.
PLoS One ; 19(2): e0298621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412158

RESUMO

The material properties of some bones are known to vary with anatomical location, orientation and position within the bone (e.g., cortical and trabecular bone). Details of the heterogeneity and anisotropy of bone is an important consideration for biomechanical studies that apply techniques such as finite element analysis, as the outcomes will be influenced by the choice of material properties used. Datasets detailing the regional variation of material properties in the bones of the skull are sparse, leaving many finite element analyses of skulls no choice but to employ homogeneous, isotropic material properties, often using data from a different species to the one under investigation. Due to the growing significance of investigating the cranial biomechanics of the rabbit in basic science and clinical research, this study used nanoindentation to measure the elastic modulus of cortical and trabecular bone throughout the skull. The elastic moduli of cortical bone measured in the mediolateral and ventrodorsal direction were found to decrease posteriorly through the skull, while it was evenly distributed when measured in the anteroposterior direction. Furthermore, statistical tests showed that the variation of elastic moduli between separate regions (anterior, middle and posterior) of the skull were significantly different in cortical bone, but was not in trabecular bone. Elastic moduli measured in different orthotropic planes were also significantly different, with the moduli measured in the mediolateral direction consistently lower than that measured in either the anteroposterior or ventrodorsal direction. These findings demonstrate the significance of regional and directional variation in cortical bone elastic modulus, and therefore material properties in finite element models of the skull, particularly those of the rabbit, should consider the heterogeneous and orthotropic properties of skull bone when possible.


Assuntos
Osso Esponjoso , Crânio , Animais , Coelhos , Elasticidade , Módulo de Elasticidade , Cabeça , Análise de Elementos Finitos , Fenômenos Biomecânicos
12.
R Soc Open Sci ; 10(2): 220587, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816846

RESUMO

The process of feeding in mammals is achieved by moving the mandible relative to the cranium to bring the teeth into and out of occlusion. This process is especially complex in rodents which have a highly specialized configuration of jaw adductor muscles. Here, we used the computational technique of multi-body dynamics analysis (MDA) to model feeding in the red (Sciurus vulgaris) and grey squirrel (Sciurus carolinensis) and determine the relative contribution of each jaw-closing muscle in the generation of bite forces. The MDA model simulated incisor biting at different gapes. A series of 'virtual ablation experiments' were performed at each gape, whereby the activation of each bilateral pair of muscles was set to zero. The maximum bite force was found to increase at wider gapes. As predicted, the superficial and anterior deep masseter were the largest contributors to bite force, but the temporalis had only a small contribution. Further analysis indicated that the temporalis may play a more important role in jaw stabilization than in the generation of bite force. This study demonstrated the ability of MDA to elucidate details of red and grey squirrel feeding biomechanics providing a complement to data gathered via in vivo experimentation.

13.
J Morphol ; 284(3): e21555, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630615

RESUMO

Cranial sutures are fibrocellular joints between the skull bones that are progressively replaced with bone throughout ontogeny, facilitating growth and cranial shape change. This transition from soft tissue to bone is reflected in the biomechanical properties of the craniofacial complex. However, the mechanical significance of cranial sutures has only been explored at a few localised areas within the mammalian skull, and as such our understanding of suture function in overall skull biomechanics is still limited. Here, we sought to determine how the overall strain environment is affected by the complex network of cranial sutures in the mammal skull. We combined two computational biomechanical methods, multibody dynamics analysis and finite element analysis, to simulate biting in a rat skull and compared models with and without cranial sutures. Our results show that including complex sutures in the rat model does not substantially change overall strain gradients across the cranium, particularly strain magnitudes in the bones overlying the brain. However, local variations in strain magnitudes and patterns can be observed in areas close to the sutures. These results show that, during feeding, sutures may be more important in some regions than others. Sutures should therefore be included in models that require accurate local strain magnitudes and patterns of cranial strain, particularly if models are developed for analysis of specific regions, such as the temporomandibular joint or zygomatic arch. Our results suggest that, for mammalian skulls, cranial sutures might be more important for allowing brain expansion during growth than redistributing biting loads across the cranium in adults.


Assuntos
Suturas Cranianas , Crânio , Ratos , Animais , Estresse Mecânico , Cabeça , Mamíferos , Fenômenos Biomecânicos
14.
Artigo em Inglês | MEDLINE | ID: mdl-37669853

RESUMO

OBJECTIVES: Facial airflow from a hand-held fan may reduce breathlessness severity and hasten postexertion recovery. Data from randomised controlled trials are limited and the optimal airflow speed remains unknown. We aimed to determine the effect of different airflow speeds on recovery from exercise-induced breathlessness. METHODS: A prospective, randomised, cross-over design. Ten healthy participants (seven male; mean age 29±4 years; height 175±9 cm; body mass 76.9±14.1 kg) completed six bouts of 4 min of exercise. During the first 5 min of a 20 min recovery phase, participants received one of five airflow speeds by holding a fan ~15 cm from their face, or no fan control, administered in random order. Fan A had an internal blade, and fan B had an external blade. Breathlessness was measured using a numerical rating scale (NRS) at minute intervals for the first 10 min, and facial skin temperature was recorded using a thermal imaging camera (immediately postexertion and 5 min recovery). RESULTS: Nine participants completed the trial. A significant main effect for airflow speed (p=0.016, ηp2=0.285) and interaction effect for airflow speed over time (p=0.008, ηp2=0.167) suggest that the airflow speed modifies breathlessness during recovery from exercise. Fan speeds of 1.7 m/s or greater increased the speed of recovery from breathlessness compared with control (p<0.05) with the highest airflow speeds (2.5 m/s and 3.3 m/s) giving greatest facial cooling. CONCLUSION: Higher airflow rates (1.7 m/s or greater) reduced self-reported recovery times from exercise-induced breathlessness and reduced facial temperature .

15.
J Voice ; 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36192288

RESUMO

OBJECTIVE: Musical theater (MT) performers are required to sing in several different styles, requiring different registration (quality) and different use of vibrato. Many measures of vibrato in MT performers are made in laboratory settings, studying a limited set of pitches, intensities, and vowels, using amateur and not well-defined professional singers. It is unclear if these observations are observed in well-known professional MT singers, during live instrumentally accompanied legit and belt performances. STUDY DESIGN: Descriptive from a convenience sample. METHODS: Five well-known MT performers' recordings of one legit and one belt performance were downloaded for analysis of vocal vibrato. The vocal part was extracted from the recording and each note demarcated with and without vibrato. The pitch track of each note was analyzed for average pitch, duration, the proportion of a note sung with vibrato, if present, and written to file. The pitch track (f0 and time stamps) was written to a separate file for further analysis. This analysis consisted of vibrato rate (Hz), vibrato extent (semitones), and cycle-to-cycle perturbation (jitter-local and shimmer-local). RESULTS: The most consistent finding was that the belt performances of the five singers had lesser proportion of notes sung with vibrato than their legit performances. The next consistent finding was that during belt performances, when vibrato was used, it was for a shorter duration within a note. There was a trend for the average rate of vibrato to be slower in the belt performances, but not to a substantial degree. There was no clear difference between legit and belt performances for vibrato extent or cycle-to-cycle perturbation. CONCLUSIONS: For these five performers, the strategy for the use of vibrato most often employed for differentiating the two singing styles was using less vibrato and when used to engage it for a shorter portion of a sung note. We believe this study offers reasonable ecological validity in how professional MT performers utilize vibrato to distinguish between belt and legit styles of singing. Vibrato rate and extent are subject to a number of factors which may not be in direct control of the singer. However, learning to sing with and without vibrato and the duration to which it is produced within a note may be a useful training strategy for students of MT.

16.
ACS Chem Biol ; 17(9): 2572-2582, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973051

RESUMO

Targeting the lysine deacetylase activity of class I histone deacetylases (HDACs) is potentially beneficial for the treatment of several diseases including human immunodeficiency virus (HIV) infection, Alzheimer's disease, and various cancers. It is therefore important to understand the function and mechanism of action of these enzymes. Class I HDACs act as catalytic components of seven large, multiprotein corepressor complexes. Different HDAC corepressor complexes have specific, nonredundant roles in the cell. It is likely that their specific functions are at least partly influenced by the substrate specificity of the complexes. To address this, we developed chemical tools to probe the specificity of HDAC complexes. We assessed a library of acetyl-lysine-containing substrate peptides and hydroxamic acid-containing inhibitor peptides against the full range of class I HDAC corepressor complexes. The results suggest that site-specific HDAC corepressor complex activity is driven in part by the recognition of the primary amino acid sequence surrounding a particular lysine position in the histone tail.


Assuntos
Ácidos Hidroxâmicos , Biblioteca de Peptídeos , Proteínas Correpressoras/metabolismo , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Lisina , Peptídeos/química
17.
Sci Rep ; 11(1): 13196, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162932

RESUMO

Although a functional relationship between bone structure and mastication has been shown in some regions of the rabbit skull, the biomechanics of the whole cranium during mastication have yet to be fully explored. In terms of cranial biomechanics, the rabbit is a particularly interesting species due to its uniquely fenestrated rostrum, the mechanical function of which is debated. In addition, the rabbit processes food through incisor and molar biting within a single bite cycle, and the potential influence of these bite modes on skull biomechanics remains unknown. This study combined the in silico methods of multi-body dynamics and finite element analysis to compute musculoskeletal forces associated with a range of incisor and molar biting, and to predict the associated strains. The results show that the majority of the cranium, including the fenestrated rostrum, transmits masticatory strains. The peak strains generated over all bites were found to be attributed to both incisor and molar biting. This could be a consequence of a skull shape adapted to promote an even strain distribution for a combination of infrequent incisor bites and cyclic molar bites. However, some regions, such as the supraorbital process, experienced low peak strain for all masticatory loads considered, suggesting such regions are not designed to resist masticatory forces.


Assuntos
Simulação por Computador , Mastigação/fisiologia , Modelos Biológicos , Coelhos/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fenômenos Biomecânicos , Cefalometria , Análise de Elementos Finitos , Incisivo , Músculo Masseter/fisiologia , Maxila/anatomia & histologia , Maxila/fisiologia , Dente Molar , Coelhos/fisiologia , Crânio/fisiologia , Estresse Mecânico , Suporte de Carga
18.
Integr Comp Biol ; 61(2): 455-463, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114009

RESUMO

Previous studies have focused on documenting shape variation in the caudal vertebrae in chameleons underlying prehensile tail function. The goal of this study was to test the impact of this variation on tail function using multibody dynamic analysis (MDA). First, observations from dissections and 3D reconstructions generated from contrast-enhanced µCT scans were used to document regional variation in arrangement of the caudal muscles along the antero-posterior axis. Using MDA, we then tested the effect of vertebral shape geometry on biomechanical function. To address this question, four different MDA models were built: those with a distal vertebral shape and with either a distal or proximal musculature, and reciprocally the proximal vertebral shape with either the proximal or distal musculature. For each muscle configuration, we calculated the force required in each muscle group for the muscle force to balance an arbitrary external force applied to the model. The results showed that the models with a distal-type of musculature are the most efficient, regardless of vertebral shape. Our models also showed that the m. ilio-caudalis pars dorsalis is least efficient when combining the proximal vertebral shape and distal musculature, highlighting the importance of the length of the transverse process in combination with the lever-moment arm onto which muscle force is exerted. This initial model inevitably has a number of simplifications and assumptions, however its purpose is not to predict in vivo forces, but instead reveals the importance of vertebral shape and muscular arrangement on the total force the tail can generate, thus providing a better understanding of the biomechanical significance of the regional variations on tail grasping performance in chameleons.


Assuntos
Lagartos , Coluna Vertebral , Cauda , Animais , Lagartos/anatomia & histologia , Músculos/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Cauda/anatomia & histologia
19.
Nat Struct Mol Biol ; 12(7): 594-602, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965486

RESUMO

The retromer complex is responsible for the retrieval of mannose 6-phosphate receptors from the endosomal system to the Golgi. Here we present the crystal structure of the mammalian retromer subunit mVps29 and show that it has structural similarity to divalent metal-containing phosphoesterases. mVps29 can coordinate metals in a similar manner but has no detectable phosphoesterase activity in vitro, suggesting a unique specificity or function. The mVps29 and mVps26 subunits bind independently to mVps35 and together form a high-affinity heterotrimeric subcomplex. Mutagenesis reveals the structural basis for the interaction of mVps29 with mVps35 and subsequent association with endosomal membranes in vivo. A conserved hydrophobic surface distinct from the primary Vps35p binding site mediates assembly of the Vps29p-Vps26p-Vps35p subcomplex with sorting nexins in yeast, and mutation of either site results in a defect in retromer-dependent membrane trafficking.


Assuntos
Proteínas de Transporte/química , Endossomos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/biossíntese , Sequência de Aminoácidos , Animais , Calorimetria , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia , Glutationa Transferase , Complexo de Golgi/metabolismo , Imunoprecipitação , Manosefosfatos/metabolismo , Metais/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Proteínas de Transporte Vesicular/metabolismo , Leveduras
20.
J Acoust Soc Am ; 128(1): 435-43, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20649237

RESUMO

Previous studies have documented that speech with flattened or inverted fundamental frequency (F0) contours is less intelligible than speech with natural variations in F0. The purpose of this present study was to further investigate how F0 manipulations affect speech intelligibility in background noise. Speech recognition in noise was measured for sentences having the following F0 contours: unmodified, flattened at the median, natural but exaggerated, inverted, and sinusoidally frequency modulated at rates of 2.5 and 5.0 Hz, rates shown to make vowels more perceptually salient in background noise. Five talkers produced 180 stimulus sentences, with 30 unique sentences per F0 contour condition. Flattening or exaggerating the F0 contour reduced key word recognition performance by 13% relative to the naturally produced speech. Inverting or sinusoidally frequency modulating the F0 contour reduced performance by 23% relative to typically produced speech. These results support the notion that linguistically incorrect or misleading cues have a greater deleterious effect on speech understanding than linguistically neutral cues.


Assuntos
Sinais (Psicologia) , Ruído/efeitos adversos , Mascaramento Perceptivo , Reconhecimento Psicológico , Detecção de Sinal Psicológico , Acústica da Fala , Inteligibilidade da Fala , Estimulação Acústica , Adolescente , Adulto , Audiometria da Fala , Humanos , Espectrografia do Som , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA