Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 50(17): 3570-7, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21438569

RESUMO

Antimicrobial drug resistance is an urgent problem in the control and treatment of many of the world's most serious infections, including Plasmodium falciparum malaria, tuberculosis, and healthcare-associated infections with Gram-negative bacteria. Because the non-mevalonate pathway of isoprenoid biosynthesis is essential in eubacteria and P. falciparum and this pathway is not present in humans, there is great interest in targeting the enzymes of non-mevalonate metabolism for antibacterial and antiparasitic drug development. Fosmidomycin is a broad-spectrum antimicrobial agent currently in clinical trials of combination therapies for the treatment of malaria. In vitro, fosmidomycin is known to inhibit the deoxyxylulose phosphate reductoisomerase (DXR) enzyme of isoprenoid biosynthesis from multiple pathogenic organisms. To define the in vivo metabolic response to fosmidomycin, we developed a novel mass spectrometry method to quantitate six metabolites of non-mevalonate isoprenoid metabolism from complex biological samples. Using this technique, we validate that the biological effects of fosmidomycin are mediated through blockade of de novo isoprenoid biosynthesis in both P. falciparum malaria parasites and Escherichia coli bacteria: in both organisms, metabolic profiling demonstrated a block of isoprenoid metabolism following fosmidomycin treatment, and growth inhibition due to fosmidomycin was rescued by media supplemented with isoprenoid metabolites. Isoprenoid metabolism proceeded through DXR even in the presence of fosmidomycin but was inhibited at the level of the downstream enzyme, methylerythritol phosphate cytidyltransferase (IspD). Overexpression of IspD in E. coli conferred fosmidomycin resistance, and fosmidomycin was found to inhibit IspD in vitro. This work has validated fosmidomycin as a biological reagent for blocking non-mevalonate isoprenoid metabolism and suggests a second in vivo target for fosmidomycin within isoprenoid biosynthesis, in two evolutionarily diverse pathogens.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Escherichia coli/efeitos dos fármacos , Fosfomicina/análogos & derivados , Plasmodium falciparum/efeitos dos fármacos , Terpenos/metabolismo , Aldose-Cetose Isomerases/metabolismo , Cromatografia Líquida , Meios de Cultura , Resistência Microbiana a Medicamentos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fosfomicina/farmacologia , Ácido Mevalônico/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredutases/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Espectrometria de Massas em Tandem
2.
Infect Immun ; 77(12): 5245-51, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19797074

RESUMO

Type 1 pilus directs bladder epithelial binding and invasion by uropathogenic Escherichia coli (UPEC) in the initial stage of cystitis, but the bacterial determinants of postinvasion events in the pathogenesis of cystitis are largely undetermined. We show here that the UPEC outer membrane protein A (OmpA), a monomeric, major, integral protein component of the bacterial outer membrane, functions as a critical determinant of intracellular virulence for UPEC, promoting persistent infection within bladder epithelium. Using a murine urinary tract infection (UTI) model, we demonstrate that whereas deletion of the UPEC ompA gene did not disrupt initial epithelial binding and invasion by UPEC, it did preclude completion of the intracellular bacterial community (IBC) pathway, accompanied by diminishing bacterial loads in the bladder. This defect in epithelial persistence of the ompA mutant was enhanced in competitive infections with wild-type UPEC. Microscopic examinations revealed that the ompA mutant formed significantly fewer IBCs, and those that were initiated were unable to progress past the early stages of maturation. These defects could be corrected by complementation of ompA. In addition, expression of ompA during wild-type UTI was sharply increased at time points correlated with IBC development and the arrival of host immune effector cells. Our findings establish OmpA as a key UPEC virulence factor that functions after epithelial invasion to facilitate IBC maturation and chronic bacterial persistence.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Cistite/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Fatores de Virulência/fisiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Contagem de Colônia Microbiana , Feminino , Deleção de Genes , Teste de Complementação Genética , Camundongos , Camundongos Endogâmicos C3H , Bexiga Urinária/microbiologia , Fatores de Virulência/genética
4.
PLoS One ; 3(10): e3359, 2008 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-18836534

RESUMO

BACKGROUND: SurA is a periplasmic peptidyl-prolyl isomerase (PPIase) and chaperone of Escherichia coli and other Gram-negative bacteria. In contrast to other PPIases, SurA appears to have a distinct role in chaperoning newly synthesized porins destined for insertion into the outer membrane. Previous studies have indicated that the chaperone activity of SurA rests in its "core module" (the N- plus C-terminal domains), based on in vivo envelope phenotypes and in vitro binding and protection of non-native substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we determined the components of SurA required for chaperone activity using in vivo phenotypes relevant to disease causation by uropathogenic E. coli (UPEC), namely membrane resistance to permeation by antimicrobials and maturation of the type 1 pilus usher FimD. FimD is a SurA-dependent, integral outer membrane protein through which heteropolymeric type 1 pili, which confer bladder epithelial binding and invasion capacity upon uropathogenic E. coli, are assembled and extruded. Consistent with prior results, the in vivo chaperone activity of SurA in UPEC rested primarily in the core module. However, the PPIase domains I and II were not expendable for wild-type resistance to novobiocin in broth culture. Steady-state levels of FimD were substantially restored in the UPEC surA mutant complemented with the SurA N- plus C-terminal domains. The addition of PPIase domain I augmented FimD maturation into the outer membrane, consistent with a model in which domain I enhances stability of and/or substrate binding by the core module. CONCLUSIONS/SIGNIFICANCE: Our results confirm the core module of E. coli SurA as a potential target for novel anti-infective development.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Proteínas de Fímbrias/metabolismo , Peptidilprolil Isomerase/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Teste de Complementação Genética , Testes de Sensibilidade Microbiana , Mutação , Novobiocina/farmacologia , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Periplasma/genética , Periplasma/metabolismo , Porinas/química , Porinas/genética , Porinas/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA