Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Surg Res ; 176(1): e41-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22342379

RESUMO

BACKGROUND: Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. MATERIALS AND METHODS: Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. RESULTS: Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. CONCLUSION: In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics.


Assuntos
Técnicas de Silenciamento de Genes , Rejeição de Enxerto/imunologia , Células HeLa , Tolerância Imunológica/fisiologia , Células Jurkat , Interferência de RNA/fisiologia , Biologia de Sistemas , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Rejeição de Enxerto/genética , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Humanos , Tolerância Imunológica/genética , Técnicas In Vitro , Células Jurkat/efeitos dos fármacos , Células Jurkat/metabolismo , RNA Interferente Pequeno/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA