Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Comput Biol Med ; 139: 104966, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715553

RESUMO

Deep learning is a powerful tool that became practical in 2008, harnessing the power of Graphic Processing Unites, and has developed rapidly in image, video, and natural language processing. There are ongoing developments in the application of deep learning to medical data for a variety of tasks across multiple imaging modalities. The reliability and repeatability of deep learning techniques are of utmost importance if deep learning can be considered a tool for assisting experts, including physicians, radiologists, and sonographers. Owing to the high costs of labeling data, deep learning models are often evaluated against one expert, and it is unknown if any errors fall within a clinically acceptable range. Ultrasound is a commonly used imaging modality for breast cancer screening processes and for visually estimating risk using the Breast Imaging Reporting and Data System score. This process is highly dependent on the skills and experience of the sonographers and radiologists, thereby leading to interobserver variability and interpretation. For these reasons, we propose an interobserver reliability study comparing the performance of a current top-performing deep learning segmentation model against three experts who manually segmented suspicious breast lesions in clinical ultrasound (US) images. We pretrained the model using a US thyroid segmentation dataset with 455 patients and 50,993 images, and trained the model using a US breast segmentation dataset with 733 patients and 29,884 images. We found a mean Fleiss kappa value of 0.78 for the performance of three experts in breast mass segmentation compared to a mean Fleiss kappa value of 0.79 for the performance of experts and the optimized deep learning model.


Assuntos
Aprendizado Profundo , Mama/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Ultrassonografia
2.
IEEE Access ; 9: 5119-5127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747681

RESUMO

Medical segmentation is an important but challenging task with applications in standardized report generation, remote medicine and reducing medical exam costs by assisting experts. In this paper, we exploit time sequence information using a novel spatio-temporal recurrent deep learning network to automatically segment the thyroid gland in ultrasound cineclips. We train a DeepLabv3+ based convolutional LSTM model in four stages to perform semantic segmentation by exploiting spatial context from ultrasound cineclips. The backbone DeepLabv3+ model is replicated six times and the output layers are replaced with convolutional LSTM layers in an atrous spatial pyramid pooling configuration. Our proposed model achieves mean intersection over union scores of 0.427 for cysts, 0.533 for nodules and 0.739 for thyroid. We demonstrate the potential application of convolutional LSTM models for thyroid ultrasound segmentation.

3.
Ultrasound Med Biol ; 46(12): 3393-3403, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32917470

RESUMO

We applied sub-Hertz analysis of viscoelasticity (SAVE) to differentiate breast masses in pre-biopsy patients. Tissue response during external ramp-and-hold stress was ultrasonically detected. Displacements were used to acquire tissue viscoelastic parameters. The fast instantaneous response and slow creep-like deformations were modeled as the response of a linear standard solid from which viscoelastic parameters were estimated. These parameters were used in a multi-variable classification framework to differentiate malignant from benign masses identified by pathology. When employing all viscoelasticity parameters, SAVE resulted in 71.43% accuracy in differentiating lesions. When combined with ultrasound features and lesion size, accuracy was 82.24%. Adding a quality metric based on uniaxial motion increased the accuracy to 81.25%. When all three were combined with SAVE, accuracy was 91.3%. These results confirm the utility of SAVE as a robust ultrasound-based diagnostic tool for non-invasive differentiation of breast masses when used as stand-alone biomarkers or in conjunction with ultrasonic features.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Diagnóstico Diferencial , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Viscosidade
4.
PLoS One ; 13(5): e0195816, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29768415

RESUMO

In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13-55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal de Mama/diagnóstico por imagem , Carcinoma Intraductal não Infiltrante/diagnóstico por imagem , Carcinoma Lobular/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Ultrassonografia Mamária/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA