Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 800339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975992

RESUMO

Bacterial blight of hazelnut (Corylus avellana L.) is caused by Xanthomonas arboricola pv. corylina (Xac). In the past, bacterial blight has been a key disease impacting the Oregon hazelnut industry where 99% of the United States hazelnut crop is grown. The disease is re-emerging in young orchards, as acreage of newly released hazelnut cultivars rapidly increases. This increase in hazelnut acreage is accompanied by renewed interest in developing control strategies for bacterial blight. Information on susceptibility of hazelnut cultivars to Xac is limited, partially due to lack of verified methods to quantify hazelnut cultivar response to artificial inoculation. In this research, Xac inoculation protocols were adapted to two hazelnut growing environments to evaluate cultivar susceptibility: in vitro tissue culture under sterile and controlled conditions, and in vivo potted tree conditions. Five hazelnut cultivars were evaluated using the in vitro inoculation protocol and seven hazelnut cultivars were evaluated using the in vivo inoculation protocol. Under in vitro conditions, there were severe bacterial blight symptoms on each cultivar consistent with those seen in the field, but no significant differences in the susceptibility of the newly released cultivars were observed compared to known Xac-susceptible cultivar ("Barcelona"). Under in vivo conditions, the proportion of necrotic buds were significantly higher in "Jefferson" and "Dorris" compared to all of the other tested cultivars, including "Barcelona." The symptom progression seen in vivo mirrored the timing and symptom progression of bacterial blight reported from field observations. The in vitro conditions significantly reduced the amount of time required to measure the inoculation efficiency compared to the in vivo environment and allowed for greater replication. Further studies on the effects of Xac can use the results of these experiments to establish a dose-response model for bacterial blight, a wider range of germplasm can be tested under in vitro conditions, and management strategies that can be evaluated on large populations of new cultivars using the in vivo methods.

2.
Front Plant Sci ; 12: 735597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046969

RESUMO

Chestnut cultivation for nut production is increasing in the eastern half of the United States. Chinese chestnuts (Castanea mollissima Blume), or Chinese hybrids with European (C. sativa Mill.) and Japanese chestnuts (C. crenata Sieb. & Zucc.), are cultivated due to their high kernel quality, climatic adaptation, and disease resistance. Several hundred thousand pounds of high-quality fresh nuts are taken to market every fall, and several hundred additional orchards are entering bearing years. Grower-led on-farm improvement has largely facilitated this growth. A lack of significant investments in chestnut breeding in the region, paired with issues of graft incompatibility, has led many growers to cultivate seedlings of cultivars rather than grafted cultivars. After decades of evaluation, selection, and sharing of plant materials, growers have reached a threshold of improvement where commercial seedling orchards can be reliably established by planting offspring from elite selected parents. Growers recognize that if cooperation persists and university expertise and resources are enlisted, improvement can continue and accelerate. To this end, the University of Missouri Center for Agroforestry (UMCA) and chestnut growers throughout the eastern United States are partnering to formalize a participatory breeding program - the Chestnut Improvement Network. This partnership entails the UMCA providing an organizational structure and leadership to coordinate on-farm improvement, implement strategic crossing schemes, and integrate genetic tools. Chestnut growers offer structural capacity by cultivating seedling production orchards that provide financial support for the grower but also house segregating populations with improved individuals, in situ repositories, and selection trials, creating great value for the industry.

3.
PLoS One ; 14(10): e0223500, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31600302

RESUMO

Four fungi isolated from trunks and branches of European hazelnut (Corylus avellana L.) from commercial orchards in the Willamette Valley, Oregon were characterized and pathogenicity was tested on potted hazelnut trees. The acreage of hazelnuts in Oregon has expanded greatly in recent years in response to the availability of Eastern filbert blight resistant cultivars. Fungi were characterized using the BLASTn algorithm and the GenBank database with multiple partial gene sequence(s). If BLASTn and GenBank were not sufficient for species-level identification, then a multilocus sequence analysis (MLSA) was performed. The four pathogens were identified as Diplodia mutilla (Fr.) Mont., Dothiorella omnivora B.T. Linaldeddu, A. Deidda & B. Scanu, Valsa cf. eucalypti Cooke & Harkn., and Diaporthe eres Nitschke. All pathogens but D. omnivora have not been previously reported from European hazelnut in the literature. All four pathogens caused lesions on trunks bare root hazelnut trees cv. 'Jefferson' planted in pots in the greenhouse and fungi were re-isolated from inoculated trees. D. mutilla appeared particularly aggressive in repeated inoculation experiments.


Assuntos
Corylus/microbiologia , Fungos/patogenicidade , Doenças das Plantas/microbiologia , Fungos/isolamento & purificação , Oregon , Filogenia , Árvores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA