Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 113(1): 109-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22592455

RESUMO

Heat acclimation (HA) can improve thermoregulatory stability in able-bodied athletes in part by an enhanced sweat response. Athletes with spinal cord lesion are unable to sweat below the lesion and it is unknown if they can HA. Five paralympic shooting athletes with spinal cord lesion completed seven consecutive days HA in hot conditions (33.4 ± 0.6 °C, 64.8 ± 3.7 %rh). Each HA session consisted of 20 min arm crank exercise at 50 % [Formula: see text] followed by 40 min rest, or simulated shooting. Aural temperature (T (aur)) was recorded throughout. Body mass was assessed before and after each session and a sweat collection swab was fixed to T12 of the spine. Fingertip whole blood was sampled at rest on days 1 and 7 for estimation of the change in plasma volume. Resting T (aur) declined from 36.3 ± 0.2 °C on day 1 to 36.0 ± 0.2 °C by day 6 (P < 0.05). During the HA sessions mean, T (aur) declined from 37.2 ± 0.2 °C on day 1, to 36.7 ± 0.3 °C on day 7 (P < 0.05). Plasma volume increased from day 1 by 1.5 ± 0.6 % on day 7 (P < 0.05). No sweat secretion was detected or changes in body mass observed from any participant. Repeated hyperthermia combined with limited evaporative heat loss was sufficient to increase plasma volume, probably by alterations in fluid regulatory hormones. In conclusion, we found that although no sweat response was observed, athletes with spinal cord lesion could partially HA.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Exercício Físico , Traumatismos da Medula Espinal/fisiopatologia , Esportes , Adulto , Temperatura Alta , Humanos
2.
J Sports Sci ; 29(11): 1125-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21777052

RESUMO

The aim of this study was to determine the effect of 10 days of heat acclimation with and without pre-cooling on intermittent sprint exercise performance in the heat. Eight males completed three intermittent cycling sprint protocols before and after 10 days of heat acclimation. Before acclimation, one sprint protocol was conducted in control conditions (21.8 ± 2.2°C, 42.8 ± 6.7% relative humidity) and two sprint protocols in hot, humid conditions (33.3 ± 0.6°C, 52.2 ± 6.8% relative humidity) in a randomized order. One hot, humid condition was preceded by 20 min of thigh pre-cooling with ice packs (-16.2 ± 4.5°C). After heat acclimation, the two hot, humid sprint protocols were repeated. Before heat acclimation, peak power output declined in the heat (P < 0.05) but pre-cooling prevented this. Ten days of heat acclimation reduced resting rectal temperature from 37.8 ± 0.3°C to 37.4 ± 0.3°C (P < 0.01). When acclimated, peak power output increased by ∼2% (P < 0.05, main effect) and no reductions in individual sprint peak power output were observed. Additional pre-cooling offered no further ergogenic effect. Unacclimated athletes competing in the heat should pre-cool to prevent reductions in peak power output, but heat acclimate for an increased peak power output.


Assuntos
Aclimatação , Ciclismo/fisiologia , Temperatura Baixa , Exercício Físico/fisiologia , Temperatura Alta , Esforço Físico/fisiologia , Estresse Fisiológico , Adulto , Teste de Esforço , Humanos , Umidade , Gelo , Masculino , Coxa da Perna , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA