Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Semin Thromb Hemost ; 47(2): 161-173, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33636747

RESUMO

Decades of preclinical and clinical studies developing gene therapy for hemophilia are poised to bear fruit with current promising pivotal studies likely to lead to regulatory approval. However, this recent success should not obscure the multiple challenges that were overcome to reach this destination. Gene therapy for hemophilia A and B benefited from advancements in the general gene therapy field, such as the development of adeno-associated viral vectors, as well as disease-specific breakthroughs, like the identification of B-domain deleted factor VIII and hyperactive factor IX Padua. The gene therapy field has also benefited from hemophilia B clinical studies, which revealed for the first time critical safety concerns related to immune responses to the vector capsid not anticipated in preclinical models. Preclinical studies have also investigated gene transfer approaches for other rare inherited bleeding disorders, including factor VII deficiency, von Willebrand disease, and Glanzmann thrombasthenia. Here we review the successful gene therapy journey for hemophilia and pose some unanswered questions. We then discuss the current state of gene therapy for these other rare inherited bleeding disorders and how the lessons of hemophilia gene therapy may guide clinical development.


Assuntos
Terapia Genética/métodos , Transtornos Hemorrágicos/terapia , Humanos
2.
Mol Ecol ; 30(24): 6791-6805, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582586

RESUMO

Vertebrate immunity is a complex system consisting of a mix of constitutive and inducible defences. Furthermore, host immunity is subject to selective pressure from a range of parasites and pathogens which can produce variation in these defences across populations. As populations evolve immune responses to parasites, they may adapt via a combination of (1) constitutive differences, (2) shared inducible responses, or (3) divergent inducible responses. Here, we leverage a powerful natural host-parasite model system (Gasterosteus aculeatus and Schistochephalus solidus) to tease apart the relative contributions of these three types of adaptations to among-population divergence in response to parasites. Gene expression analyses revealed limited evidence of significant divergence in constitutive expression of immune defence, and strong signatures of conserved inducible responses to the parasite. Furthermore, our results highlight a handful of immune-related genes which show divergent inducible responses which may contribute disproportionately to functional differences in infection success or failure. In addition to investigating variation in evolutionary adaptation to parasite selection, we also leverage this unique data set to improve understanding of cellular mechanisms underlying a putative resistance phenotype (fibrosis). Combined, our results provide a case study in evolutionary immunology showing that a very small number of genes may contribute to genotype differences in infection response.


Assuntos
Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Doenças dos Peixes/genética , Expressão Gênica , Interações Hospedeiro-Parasita/genética , Smegmamorpha/genética
3.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068428

RESUMO

The engineered antibody-like entry inhibitor eCD4-Ig neutralizes every human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus isolate it has been tested against. The exceptional breadth of eCD4-Ig derives from its ability to closely and simultaneously emulate the HIV-1 receptor CD4 and coreceptors, either CCR5 or CXCR4. Here we investigated whether viral escape from eCD4-Ig is more difficult than that from CD4-Ig or the CD4-binding site antibody NIH45-46. We observed that a viral swarm selected with high concentrations of eCD4-Ig was increasingly resistant to but did not fully escape from eCD4-Ig. In contrast, viruses selected under the same conditions with CD4-Ig or NIH45-46 fully escaped from those inhibitors. eCD4-Ig-resistant viruses acquired unique changes in the V2 apex, V3, V4, and CD4-binding regions of the HIV-1 envelope glycoprotein (Env). Most of the alterations did not directly affect neutralization by eCD4-Ig or neutralizing antibodies. However, alteration of Q428 to an arginine or lysine resulted in markedly greater resistance to eCD4-Ig and CD4-Ig, with correspondingly dramatic losses in infectivity and greater sensitivity to a V3 antibody and to serum from an infected individual. Compensatory mutations in the V3 loop (N301D) and in the V2 apex (K171E) partially restored viral fitness without affecting serum or eCD4-Ig sensitivity. Collectively, these data suggest that multiple mutations will be necessary to fully escape eCD4-Ig without loss of viral fitness.IMPORTANCE HIV-1 broadly neutralizing antibodies (bNAbs) and engineered antibody-like inhibitors have been compared for their breadths, potencies, and in vivo half-lives. However, a key limitation in the use of antibodies to treat an established HIV-1 infection is the rapid emergence of fully resistant viruses. Entry inhibitors of similar breadths and potencies can differ in the ease with which viral escape variants arise. Here we show that HIV-1 escape from the potent and exceptionally broad entry inhibitor eCD4-Ig is more difficult than that from CD4-Ig or the bNAb NIH45-46. Indeed, full escape was not observed under conditions under which escape from CD4-Ig or NIH45-46 was readily detected. Moreover, viruses that were partially resistant to eCD4-Ig were markedly less infective and more sensitive to antibodies in the serum of an infected person. These data suggest that eCD4-Ig will be more difficult to escape and that even partial escape will likely extract a high fitness cost.


Assuntos
Anticorpos Neutralizantes/imunologia , Antígenos CD4/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-2/imunologia , Células HEK293 , Proteína gp120 do Envelope de HIV/imunologia , Humanos
4.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541842

RESUMO

Broadly neutralizing antibodies (bNAbs) target five major epitopes on the HIV-1 envelope glycoprotein (Env). The most potent bNAbs have median half-maximal inhibitory concentration (IC50) values in the nanomolar range, and the broadest bNAbs neutralize up to 98% of HIV-1 strains. The engineered HIV-1 entry inhibitor eCD4-Ig has greater breadth than bNAbs and similar potency. eCD4-Ig is markedly more potent than CD4-Ig due to its C-terminal coreceptor-mimetic peptide. Here we investigated whether the coreceptor-mimetic peptide mim6 improved the potency of bNAbs with different epitopes. We observed that when mim6 was appended to the C terminus of the heavy chains of bNAbs, this sulfopeptide improved the potency of all classes of bNAbs against HIV-1 isolates that are sensitive to neutralization by the sulfopeptide alone. However, mim6 did not significantly enhance neutralization of other isolates when appended to most classes of bNAbs, with one exception. Specifically, mim6 improved the potency of bNAbs of the V3-glycan class, including PGT121, PGT122, PGT128, and 10-1074, by an average of 2-fold for all HIV-1 isolates assayed. Despite this difference, 10-1074 does not induce exposure of the coreceptor-binding site, and addition of mim6 to 10-1074 did not promote shedding of the gp120 subunit of Env. Mixtures of 10-1074 and an Fc domain fused to mim6 neutralized less efficiently than a 10-1074/mim6 fusion, indicating that mim6 enhances the avidity of this fusion. Our data show that mim6 can consistently improve the potency of V3-glycan antibodies and suggest that these antibodies bind in an orientation that facilitates mim6 association with Env.IMPORTANCE HIV-1 requires both the cellular receptor CD4 and a tyrosine-sulfated coreceptor to infect its target cells. CD4-Ig is a fusion of the HIV-1-binding domains of CD4 with an antibody Fc domain. Previous studies have demonstrated that the potency of CD4-Ig is markedly increased by appending a coreceptor-mimetic sulfopeptide to its C terminus. We investigated whether this coreceptor-mimetic peptide improves the potency of broadly neutralizing antibodies (bNAbs) targeting five major epitopes on the HIV-1 envelope glycoprotein (Env). We observed that inclusion of the sulfopeptide dramatically improved the potency of all bNAb classes against isolates with more-open Env structures, typically those that utilize the coreceptor CXCR4. In contrast, the sulfopeptide improved only V3-glycan antibodies when neutralizing primary isolates, on average by 2-fold. These studies improve the potency of one class of bNAbs, show that coreceptor-mimetic sulfopeptides enhance neutralization through distinct mechanisms, and provide insight for the design of novel multispecific entry inhibitors.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Fragmentos de Peptídeos/imunologia , Peptidomiméticos/imunologia , Antígenos CD4/imunologia , Linhagem Celular , Epitopos/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Testes de Neutralização
5.
Mol Ther ; 27(3): 650-660, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30704961

RESUMO

Adeno-associated virus (AAV) delivery of potent and broadly neutralizing antibodies (bNAbs is a promising approach for the prevention of HIV-1 infection. The immunoglobulin G (IgG)1 subtype is usually selected for this application, because it efficiently mediates antibody effector functions and has a somewhat longer half-life. However, the use of IgG1-Fc has been associated with the generation of anti-drug antibodies (ADAs) that correlate with loss of antibody expression. In contrast, we have shown that expression of the antibody-like molecule eCD4-Ig bearing a rhesus IgG2-Fc domain showed reduced immunogenicity and completely protected rhesus macaques from simian-HIV (SHIV)-AD8 challenges. To directly compare the performance of the IgG1-Fc and the IgG2-Fc domains in a prophylactic setting, we compared AAV1 expression of rhesus IgG1 and IgG2 forms of four anti-HIV bNAbs: 3BNC117, NIH45-46, 10-1074, and PGT121. Interestingly, IgG2-isotyped bNAbs elicited significantly lower ADA than their IgG1 counterparts. We also observed significant protection from two SHIV-AD8 challenges in macaques expressing IgG2-isotyped bNAbs, but not from those expressing IgG1. Our data suggest that monoclonal antibodies isotyped with IgG2-Fc domains are less immunogenic than their IgG1 counterparts, and they highlight ADAs as a key barrier to the use of AAV1-expressed bNAbs.


Assuntos
Anticorpos Neutralizantes/metabolismo , HIV-1/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Dependovirus/genética , HIV-1/genética , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Estimativa de Kaplan-Meier , Macaca mulatta
6.
Proc Natl Acad Sci U S A ; 114(25): 6575-6580, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28588142

RESUMO

Parasites can be a major cause of natural selection on hosts, which consequently evolve a variety of strategies to avoid, eliminate, or tolerate infection. When ecologically similar host populations present disparate infection loads, this natural variation can reveal immunological strategies underlying adaptation to infection and population divergence. For instance, the tapeworm Schistocephalus solidus persistently infects 0-80% of threespine stickleback (Gasterosteus aculeatus) in lakes on Vancouver Island. To test whether these heterogeneous infection rates result from evolved differences in immunity, we experimentally exposed laboratory-reared fish from ecologically similar high-infection and no-infection populations to controlled doses of Schistocephalus We observed heritable between-population differences in several immune traits: Fish from the naturally uninfected population initiated a stronger granulocyte response to Schistocephalus infection, and their granulocytes constitutively generate threefold more reactive oxygen species in cell culture. Despite these immunological differences, Schistocephalus was equally successful at establishing initial infections in both host populations. However, the no-infection fish dramatically suppressed tapeworm growth relative to high-infection fish, and parasite size was intermediate in F1 hybrid hosts. Our results show that stickleback recently evolved heritable variation in their capacity to suppress helminth growth by two orders of magnitude. Data from many natural populations indicate that growth suppression is widespread but not universal and, when present, is associated with reduced infection prevalence. Host suppression of helminth somatic growth may be an important immune strategy that aids in parasite clearance or in mitigating the fitness costs of persistent infection.


Assuntos
Cestoides/crescimento & desenvolvimento , Infecções por Cestoides/parasitologia , Doenças dos Peixes/parasitologia , Smegmamorpha/parasitologia , Vertebrados/parasitologia , Animais , Cestoides/imunologia , Doenças dos Peixes/imunologia , Granulócitos/imunologia , Granulócitos/parasitologia , Interações Hospedeiro-Parasita/imunologia , Explosão Respiratória/imunologia , Smegmamorpha/imunologia , Vertebrados/imunologia , Virulência/imunologia
7.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29593050

RESUMO

The human immunodeficiency virus type 1 (HIV-1) entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralized all HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates that it has been tested against, suggesting that it may be useful in clinical settings, where antibody escape is a concern. Here, we characterize three new eCD4-Ig variants, each with a different architecture and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as the original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented the promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications.IMPORTANCE HIV-1 bNAbs have properties different from those of antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral life cycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the utility of antibodies as a treatment for HIV-1 infection or as part of an effort to eradicate latently infected cells. eCD4-Ig is an antibody-like entry inhibitor that closely mimics HIV-1's obligate receptors. eCD4-Ig appears to be qualitatively different from antibodies, since it neutralizes all HIV-1, HIV-2, and SIV isolates. Here, we characterize three new structurally distinct eCD4-Ig variants and show that each excels in a key property useful to prevent, treat, or cure an HIV-1 infection. For example, one variant neutralized HIV-1 most efficiently, while others best enlisted natural killer cells to eliminate infected cells. These observations will help generate eCD4-Ig variants optimized for different clinical applications.


Assuntos
Anticorpos Neutralizantes/imunologia , Imunoadesinas CD4/farmacologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Fatores Imunológicos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/genética , Antígenos CD4/imunologia , Imunoadesinas CD4/genética , Linhagem Celular , Cães , Células HEK293 , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Humanos
8.
Mol Ecol ; 28(11): 2831-2845, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31141257

RESUMO

To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping-by-sequencing (ddRADseq) to quantify population structure and the effect of host-symbiont interactions between the northernmost fungus-farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome-wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant-fungus genome-genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population-genetic structure was concordant between the ants and one cultivar type (M-fungi, concordant clines) but discordant for the other cultivar type (T-fungi). Discordance in population-genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between-nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant-fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome-genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.


Assuntos
Formigas/genética , Formigas/microbiologia , Fungos/genética , Genômica , Simbiose , Animais , Variação Genética , Genótipo , Análise de Componente Principal
9.
Mol Ecol ; 28(7): 1748-1764, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742734

RESUMO

Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present-day tropical biota. Using genome-wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post-Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as "isolation by instability," highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.


Assuntos
Anuros/genética , Mudança Climática , Genética Populacional , Pradaria , Animais , Brasil , DNA Mitocondrial/genética , Fluxo Gênico , Modelos Genéticos , Filogeografia , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Clima Tropical
10.
Nature ; 493(7432): 402-5, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23325221

RESUMO

Relative to morphological traits, we know little about how genetics influence the evolution of complex behavioural differences in nature. It is unclear how the environment influences natural variation in heritable behaviour, and whether complex behavioural differences evolve through few genetic changes, each affecting many aspects of behaviour, or through the accumulation of several genetic changes that, when combined, give rise to behavioural complexity. Here we show that in nature, oldfield mice (Peromyscus polionotus) build complex burrows with long entrance and escape tunnels, and that burrow length is consistent across populations, although burrow depth varies with soil composition. This burrow architecture is in contrast with the small, simple burrows of its sister species, deer mice (P. maniculatus). When investigated under laboratory conditions, both species recapitulate their natural burrowing behaviour. Genetic crosses between the two species reveal that the derived burrows of oldfield mice are dominant and evolved through the addition of multiple genetic changes. In burrows built by first-generation backcross mice, entrance-tunnel length and the presence of an escape tunnel can be uncoupled, suggesting that these traits are modular. Quantitative trait locus analysis also indicates that tunnel length segregates as a complex trait, affected by at least three independent genetic regions, whereas the presence of an escape tunnel is associated with only a single locus. Together, these results suggest that complex behaviours--in this case, a classic 'extended phenotype'--can evolve through multiple genetic changes each affecting distinct behaviour modules.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Ecossistema , Peromyscus/genética , Peromyscus/fisiologia , Locos de Características Quantitativas/genética , Animais , Animais Selvagens/genética , Animais Selvagens/fisiologia , Cruzamentos Genéticos , Evolução Molecular , Feminino , Genótipo , Masculino , Modelos Genéticos , Comportamento de Nidação/fisiologia
11.
Am Nat ; 189(1): 43-57, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28035893

RESUMO

Parasite infections are a product of both ecological processes affecting host-parasite encounter rates and evolutionary dynamics affecting host susceptibility. However, few studies examine natural infection variation from both ecological and evolutionary perspectives. Here, we describe the ecological and evolutionary factors generating variation in infection rates by a tapeworm (Schistocephalus solidus) in a vertebrate host, the threespine stickleback (Gasterosteus aculeatus). To explore ecological aspects of infection, we measured tapeworm prevalence in Canadian stickleback inhabiting two distinct environments: marine and freshwater. Consistent with ecological control of infection, the tapeworm is very rare in marine environments, even though marine fish are highly susceptible. Conversely, commonly infected freshwater stickleback exhibit substantial resistance in controlled laboratory trials, suggesting that high exposure risk overwhelms their recently evolved resistance. We also tested for parasite adaptation to its host by performing transcontinental reciprocal infections, using stickleback and tapeworm populations from Europe and western Canada. More infections occurred in same-continent host-parasite combinations, indicating parasite "local" adaptation, at least on the scale of continents. However, the recently evolved immunity of freshwater hosts applies to both local and foreign parasites. The pattern of adaptation described here is not wholly compatible with either of the common models of host-parasite coevolution (i.e., matching infection or targeted recognition). Instead, we propose a hybrid, eco-evolutionary model to explain the remarkable pattern of global host resistance and local parasite infectivity.


Assuntos
Coevolução Biológica , Interações Hospedeiro-Parasita , Smegmamorpha/parasitologia , Animais , Canadá , Cestoides , Europa (Continente) , Doenças dos Peixes , Parasitos
12.
Mol Ecol ; 23(24): 5937-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319241

RESUMO

We are writing in response to the population and phylogenomics meeting review by Andrews & Luikart (2014) entitled 'Recent novel approaches for population genomics data analysis'. Restriction-site-associated DNA (RAD) sequencing has become a powerful and useful approach in molecular ecology, with several different published methods now available to molecular ecologists, none of which can be considered the best option in all situations. A&L report that the original RAD protocol of Miller et al. (2007) and Baird et al. (2008) is superior to all other RAD variants because putative PCR duplicates can be identified (see Baxter et al. 2011), thereby reducing the impact of PCR artefacts on allele frequency estimates (Andrews & Luikart 2014). In response, we (i) challenge the assertion that the original RAD protocol minimizes the impact of PCR artefacts relative to that of other RAD protocols, (ii) present additional biases in RADseq that are at least as important as PCR artefacts in selecting a RAD protocol and (iii) highlight the strengths and weaknesses of four different approaches to RADseq which are a representative sample of all RAD variants: the original RAD protocol (mbRAD, Miller et al. 2007; Baird et al. 2008), double digest RAD (ddRAD, Peterson et al. 2012), ezRAD (Toonen et al. 2013) and 2bRAD (Wang et al. 2012). With an understanding of the strengths and weaknesses of different RAD protocols, researchers can make a more informed decision when selecting a RAD protocol.


Assuntos
Metagenômica/métodos , Mapeamento por Restrição/métodos , Análise de Sequência de DNA/métodos , Artefatos , Viés
13.
Mol Ther Nucleic Acids ; 35(2): 102172, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38978694

RESUMO

Clinical application of CRISPR-Cas9 technology for large deletions of somatic mutations is inefficient, and methods to improve utility suffer from our inability to rapidly assess mono- vs. biallelic deletions. Here we establish a model system for investigating allelic heterogeneity at the single-cell level and identify indel scarring from non-simultaneous nuclease activity at gRNA cut sites as a major barrier to CRISPR-del efficacy both in vitro and in vivo. We show that non-simultaneous nuclease activity is partially prevented via restriction of CRISPR-Cas9 expression via inducible adeno-associated viruses (AAVs) or lipid nanoparticles (LNPs). Inducible AAV-based expression of CRISPR-del machinery significantly improved mono- and biallelic deletion frequency in vivo, supporting the use of the Xon cassette over traditional constitutively expressing AAV approaches. These data depicting improvements to deletions and insight into allelic heterogeneity after CRISPR-del will inform therapeutic approaches for phenotypes that require either large mono- or biallelic deletions, such as autosomal recessive diseases or where mutant allele-specific gRNAs are not readily available, or in situations where the targeted sequence for excision is located multiple times in a genome.

14.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585912

RESUMO

Studying the mechanisms underlying the genotype-phenotype association is crucial in genetics. Gene expression studies have deepened our understanding of the genotype → expression → phenotype mechanisms. However, traditional expression quantitative trait loci (eQTL) methods often overlook the critical role of gene co-expression networks in translating genotype into phenotype. This gap highlights the need for more powerful statistical methods to analyze genotype → network → phenotype mechanism. Here, we develop a network-based method, called snQTL, to map quantitative trait loci affecting gene co-expression networks. Our approach tests the association between genotypes and joint differential networks of gene co-expression via a tensor-based spectral statistics, thereby overcoming the ubiquitous multiple testing challenges in existing methods. We demonstrate the effectiveness of snQTL in the analysis of three-spined stickleback (Gasterosteus aculeatus) data. Compared to conventional methods, our method snQTL uncovers chromosomal regions affecting gene co-expression networks, including one strong candidate gene that would have been missed by traditional eQTL analyses. Our framework suggests the limitation of current approaches and offers a powerful network-based tool for functional loci discoveries.

15.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979317

RESUMO

When species disperse into previously unoccupied habitats, new populations encounter unfamiliar species interactions such as altered parasite loads. Theory predicts that newly founded populations should exhibit destabilized eco-evolutionary fluctuations in infection rates and immune traits. However, to understand founder effects biologists typically rely on retrospective studies of range expansions, missing early-generation infection dynamics. To remedy this, we experimentally founded whole-lake populations of threespine stickleback. Infection rates were temporally stable in native source lakes. In contrast, newly founded populations exhibit destabilized host-parasite dynamics: high starting infection rates led to increases in a heritable immune trait (peritoneal fibrosis), suppressing infection rates. The resulting temporal auto-correlation between infection and immunity suggest that newly founded populations can exhibit rapid host-parasite eco-evolutionary dynamics.

16.
Ecol Evol ; 14(6): e11503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932947

RESUMO

Eco-evolutionary experiments are typically conducted in semi-unnatural controlled settings, such as mesocosms; yet inferences about how evolution and ecology interact in the real world would surely benefit from experiments in natural uncontrolled settings. Opportunities for such experiments are rare but do arise in the context of restoration ecology-where different "types" of a given species can be introduced into different "replicate" locations. Designing such experiments requires wrestling with consequential questions. (Q1) Which specific "types" of a focal species should be introduced to the restoration location? (Q2) How many sources of each type should be used-and should they be mixed together? (Q3) Which specific source populations should be used? (Q4) Which type(s) or population(s) should be introduced into which restoration sites? We recently grappled with these questions when designing an eco-evolutionary experiment with threespine stickleback (Gasterosteus aculeatus) introduced into nine small lakes and ponds on the Kenai Peninsula in Alaska that required restoration. After considering the options at length, we decided to use benthic versus limnetic ecotypes (Q1) to create a mixed group of colonists from four source populations of each ecotype (Q2), where ecotypes were identified based on trophic morphology (Q3), and were then introduced into nine restoration lakes scaled by lake size (Q4). We hope that outlining the alternatives and resulting choices will make the rationales clear for future studies leveraging our experiment, while also proving useful for investigators considering similar experiments in the future.

17.
Evol Ecol ; 37(1): 203-214, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37608798

RESUMO

What are the relative costs and benefits of mounting immune responses? Practitioners of ecoimmunology have grappled with this central question since the field's inception with the main tension being how to make tractable methodological choices that maintain the ecological relevance of induced and measured immune costs. Here, we point out two methodological approaches that we feel are underrepresented in the field, describe risks associated with neglecting these methods, and suggest modern techniques that maximize both the diversity and ecological relevance of collected data. First, it is commonly assumed that frequently used and experimentally convenient immune stimulants will induce ecologically relevant immune responses in study organisms. This can be a dangerous assumption. Even if a stimulant's general immune response properties are well characterized, it is critical to also measure the type and scale of immune responses induced by live pathogens. Second, patterns of immune defenses evolve like other traits, thus a comparative approach is essential to understand what forces shape immune variation. Finally, we describe modern genetic and immunological approaches that will soon become essential tools for ecoimmunologists, and present case studies that exemplify the utility of our recommendations.

18.
Ecol Evol ; 13(12): e10755, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053794

RESUMO

Parasites are ubiquitous, yet their effects on hosts are difficult to quantify and generalize across ecosystems. One promising metric of parasitic impact uses the metabolic theory of ecology (MTE) to calculate energy flux, an estimate of energy lost to parasites. We investigated the feasibility of using metabolic scaling rules to compare the energetic burden of parasitism among individuals. Specifically, we found substantial sensitivity of energy flux estimates to input parameters used in the MTE equation when using available data from a model host-parasite system (Gasterosteus aculeatus and Schistocephalus solidus). Using literature values, size data from parasitized wild fish, and a respirometry experiment, we estimate that a single S. solidus tapeworm may extract up to 32% of its stickleback host's baseline metabolic energy requirement, and that parasites in multiple infections may collectively extract up to 46%. The amount of energy siphoned from stickleback to tapeworms is large but did not instigate an increase in respiration rate in the current study. This emphasizes the importance of future work focusing on how parasites influence ecosystem energetics. The approach of using the MTE to calculate energy flux provides great promise as a quantitative foundation for such estimates and provides a more concrete metric of parasite impact on hosts than parasite abundance alone.

19.
Front Immunol ; 14: 1105617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153616

RESUMO

Introduction: Use of adeno-associated virus (AAV) vectors is complicated by host immune responses that can limit transgene expression. Recent clinical trials using AAV vectors to deliver HIV broadly neutralizing antibodies (bNAbs) by intramuscular administration resulted in poor expression with anti-drug antibodies (ADA) responses against the bNAb. Methods: Here we compared the expression of, and ADA responses against, an anti-SIV antibody ITS01 when delivered by five different AAV capsids. We first evaluated ITS01 expression from AAV vectors three different 2A peptides. Rhesus macaques were selected for the study based on preexisiting neutralizing antibodies by evaluating serum samples in a neutralization assay against the five capsids used in the study. Macaques were intramuscularly administered AAV vectors at a 2.5x10^12 vg/kg over eight administration sites. ITS01 concentrations and anti-drug antibodies (ADA) were measured by ELISA and a neutralization assay was conducted to confirm ex vivo antibody potency. Results: We observed that ITS01 expressed three-fold more efficiently in mice from AAV vectors in which heavy and light-chain genes were separated by a P2A ribosomal skipping peptide, compared with those bearing F2A or T2A peptides. We then measured the preexisting neutralizing antibody responses against three traditional AAV capsids in 360 rhesus macaques and observed that 8%, 16%, and 42% were seronegative for AAV1, AAV8, and AAV9, respectively. Finally, we compared ITS01 expression in seronegative macaques intramuscularly transduced with AAV1, AAV8, or AAV9, or with the synthetic capsids AAV-NP22 or AAV-KP1. We observed at 30 weeks after administration that AAV9- and AAV1-delivered vectors expressed the highest concentrations of ITS01 (224 µg/mL, n=5, and 216 µg/mL, n=3, respectively). The remaining groups expressed an average of 35-73 µg/mL. Notably, ADA responses against ITS01 were observed in six of the 19 animals. Lastly, we demonstrated that the expressed ITS01 retained its neutralizing activity with nearly the same potency of purified recombinant protein. Discussion: Overall, these data suggest that the AAV9 capsid is a suitable choice for intramuscular expression of antibodies in nonhuman primates.


Assuntos
Anticorpos Neutralizantes , Dependovirus , Animais , Camundongos , Macaca mulatta , Dependovirus/genética , Transgenes/genética , Capsídeo
20.
Curr Biol ; 33(20): 4285-4297.e5, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37734374

RESUMO

What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.


Assuntos
Evolução Biológica , Besouros , Cornos , Animais , Masculino , Fenômenos Biomecânicos/fisiologia , Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Cornos/anatomia & histologia , Cornos/crescimento & desenvolvimento , Cornos/fisiologia , Remoção , Caracteres Sexuais , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA