Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 31(12): 2603-2618.e9, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34048707

RESUMO

Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.


Assuntos
Caenorhabditis elegans/microbiologia , Variação Genética , Microbiota/genética , Microbiota/fisiologia , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Filogenia , Transdução de Sinais , Fatores de Transcrição/metabolismo
2.
Methods Mol Biol ; 2144: 131-144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32410031

RESUMO

The gut microbiome is an important driver of host physiology and development. Altered abundance or membership of this microbe community can influence host health and disease progression, including the determination of host lifespan and healthspan. Here, we describe a robust pipeline to measure microbiome abundance and composition in the C. elegans gut that can be applied to examine the role of the microbiome on host aging or other physiologic processes.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/microbiologia , Microbioma Gastrointestinal/genética , Ensaios de Triagem em Larga Escala/métodos , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA