Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255998

RESUMO

Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.


Assuntos
Neoplasias Pulmonares , Sarcoma , Ausência de Peso , Humanos , Masculino , Feminino , Proteômica , Citoesqueleto
2.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39337501

RESUMO

The primary objective of omics in space with focus on the human organism is to characterize and quantify biological factors that alter structure, morphology, function, and dynamics of human cells exposed to microgravity. This review discusses exciting data regarding genomics, transcriptomics, epigenomics, metabolomics, and proteomics of human cells and individuals in space, as well as cells cultured under simulated microgravity. The NASA Twins Study significantly heightened interest in applying omics technologies and bioinformatics in space and terrestrial environments. Here, we present the available publications in this field with a focus on specialized cells and stem cells exposed to real and simulated microgravity conditions. We summarize current knowledge of the following topics: (i) omics studies on stem cells, (ii) omics studies on benign specialized different cell types of the human organism, (iii) discussing the advantages of this knowledge for space commercialization and exploration, and (iv) summarizing the emerging opportunities for translational regenerative medicine for space travelers and human patients on Earth.


Assuntos
Genômica , Metabolômica , Células-Tronco , Ausência de Peso , Humanos , Células-Tronco/metabolismo , Células-Tronco/citologia , Genômica/métodos , Metabolômica/métodos , Proteômica/métodos , Epigenômica/métodos , Voo Espacial , Simulação de Ausência de Peso , Animais
3.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511587

RESUMO

Despite recent advances in heart failure (HF) therapy, the risk of cardiovascular (CV) mortality, morbidity, and HF hospitalization (HFH) are major challenges in HF treatment. We aimed to review the potential of vericiguat as a treatment option for HF. A systematic literature review was performed using the PubMed database and ClinicalTrials.gov. Four randomized controlled trials were identified, which study the safety and efficacy of vericiguat in HF patients. Vericiguat activates soluble guanylate cyclase (sGC) by binding to the beta-subunit, bypassing the requirement for NO-induced activation. The nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway plays an essential role in cardiovascular (CV) regulation and the protection of healthy cardiac function but is impaired in HF. Vericiguat reduced the risk of CV death and HFH in HF patients with reduced ejection fraction (HFrEF) but showed no therapeutic effect on HF with preserved ejection fraction (HFpEF). The trials demonstrated a favorable safety profile with most common adverse events such as hypotension, syncope, and anemia. Therefore, vericiguat is recommended for patients with HFrEF and a minimum systolic blood pressure of 100 mmHg. Treatment with vericiguat is considered when the individual patient experiences decompensation despite being on guideline-recommended medication, e.g., angiotensin-converting inhibitor/AT1 receptor antagonist, beta-adrenoceptor antagonist, spironolactone, and sodium-glucose transporter 2 inhibitors. Furthermore, larger studies are required to investigate any potential effect of vericiguat in HFpEF patients. Despite the limitations, vericiguat can be recommended for patients with HFrEF, where standard-of-care is insufficient, and the disease worsens.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/metabolismo , Resultado do Tratamento , Volume Sistólico , Guanilil Ciclase Solúvel/metabolismo , Cardiotônicos/farmacologia , Diuréticos/farmacologia
4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902110

RESUMO

Hypertension is the third leading cause of the global disease burden, and while populations live longer, adopt more sedentary lifestyles, and become less economically concerned, the prevalence of hypertension is expected to increase. Pathologically elevated blood pressure (BP) is the strongest risk factor for cardiovascular disease (CVD) and related disability, thus making it imperative to treat this disease. Effective standard pharmacological treatments, i.e., diuretics, angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blocker (ARBs), beta-adrenergic receptor blockers (BARBs), and calcium channel blockers (CCBs), are available. Vitamin D (vitD) is known best for its role in bone and mineral homeostasis. Studies with vitamin D receptor (VDR) knockout mice show an increased renin-angiotensin-aldosterone system (RAAS) activity and increased hypertension, suggesting a key role for vitD as a potential antihypertensive agent. Similar studies in humans displayed ambiguous and mixed results. No direct antihypertensive effect was shown, nor a significant impact on the human RAAS. Interestingly, human studies supplementing vitD with other antihypertensive agents reported more promising results. VitD is considered a safe supplement, proposing its great potential as antihypertensive supplement. The aim of this review is to examine the current knowledge about vitD and its role in the treatment of hypertension.


Assuntos
Anti-Hipertensivos , Conservadores da Densidade Óssea , Hipertensão , Vitamina D , Animais , Humanos , Camundongos , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Hipertensão/terapia , Sistema Renina-Angiotensina , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Receptores de Calcitriol/genética , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico
5.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36768635

RESUMO

This manuscript investigates cabozantinib, vandetanib, pralsetinib, and selpercatinib, four tyrosine kinase inhibitors (TKIs), which are used to treat advanced and/or metastatic medullary thyroid cancer (MTC). Data on efficacy and safety are presented with the main focus on treatment-related hypertension, a well-known adverse effect (AE) of these TKIs. Taken together, TKI-induced hypertension is rarely a dose-limiting side effect. However, with increasing survival times of patients under treatment, hypertension-associated complications can be expected to be on the rise without proper medication.


Assuntos
Carcinoma Neuroendócrino , Hipertensão , Neoplasias da Glândula Tireoide , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Piperidinas/efeitos adversos , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente
6.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674696

RESUMO

Microgravity changes the gene expression pattern in various cell types. This study focuses on the breast cancer cell lines MCF-7 (less invasive) and MDA-MB-231 (triple-negative, highly invasive). The cells were cultured for 14 days under simulated microgravity (s-µg) conditions using a random positioning machine (RPM). We investigated cytoskeletal and extracellular matrix (ECM) factors as well as focal adhesion (FA) and the transmembrane proteins involved in different cellular signaling pathways (MAPK, PAM and VEGF). The mRNA expressions of 24 genes of interest (TUBB, ACTB, COL1A1, COL4A5, LAMA3, ITGB1, CD44, VEGF, FLK1, EGFR, SRC, FAK1, RAF1, AKT1, ERK1, MAPK14, MAP2K1, MTOR, RICTOR, VCL, PXN, CDKN1, CTNNA1 and CTNNB1) were determined by quantitative real-time PCR (qPCR) and studied using STRING interaction analysis. Histochemical staining was carried out to investigate the morphology of the adherent cells (ADs) and the multicellular spheroids (MCSs) after RPM exposure. To better understand this experimental model in the context of breast cancer patients, a weighted gene co-expression network analysis (WGCNA) was conducted to obtain the expression profiles of 35 breast cell lines from the HMS LINCS Database. The qPCR-verified genes were searched in the mammalian phenotype database and the human genome-wide association studies (GWAS) Catalog. The results demonstrated the positive association between the real metastatic microtumor environment and MCSs with respect to the extracellular matrix, cytoskeleton, morphology, different cellular signaling pathway key proteins and several other components. In summary, the microgravity-engineered three-dimensional MCS model can be utilized to study breast cancer cell behavior and to assess the therapeutic efficacies of drugs against breast cancer in the future.


Assuntos
Neoplasias da Mama , Ausência de Peso , Humanos , Feminino , Transdução de Sinais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Estudo de Associação Genômica Ampla , Expressão Gênica , Simulação de Ausência de Peso , Linhagem Celular Tumoral
7.
Expert Rev Proteomics ; 19(1): 43-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037812

RESUMO

INTRODUCTION: A long-term stay of humans in space causes health problems and changes in protists and plants. Deep space exploration will increase the time humans or rodents will spend in microgravity (µg). Moreover, they are exposed to cosmic radiation, hypodynamia, and isolation. OMICS investigations will increase our knowledge of the underlying mechanisms of µg-induced alterations in vivo and in vitro. AREAS COVERED: We summarize the findings over the recent 3 years on µg-induced changes in the proteome of protists, plants, rodent, and human cells. Considering the thematic orientation of microgravity-related publications in that time frame, we focus on medicine-associated findings, such as the µg-induced antibiotic resistance of bacteria, the myocardial consequences of µg-induced calpain activation, and the role of MMP13 in osteoarthritis. All these point to the fact that µg is an extreme stressor that could not be evolutionarily addressed on Earth. EXPERT OPINION: In conclusion, when interpreting µg-experiments, the direct, mostly unspecific stress response, must be distinguished from specific µg-effects. For this reason, recent studies often do not consider single protein findings but place them in the context of protein-protein interactions. This enables an estimation of functional relationships, especially if these are supported by epigenetic and transcriptional data (multi-omics).


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Miocárdio , Proteoma/genética
8.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163378

RESUMO

Hypertension significantly increases the risk of cardiovascular disease. Currently, effective standard pharmacological treatment is available in the form of diuretics, ACE inhibitors, angiotensin II receptor blockers and calcium channel blockers. These all help to decrease blood pressure in hypertensive patients, each with their own mechanism. Recently, firibastat, a new first-in-class antihypertensive drug has been developed. Firibastat is a prodrug that when crossing the blood-brain barrier, is cleaved into two active EC33 molecules. EC33 is the active molecule that inhibits the enzyme aminopeptidase A. Aminopeptidase A converts angiotensin II to angiotensin III. Angiotensin III usually has three central mechanisms that increase blood pressure, so by inhibiting this enzyme activity, a decrease in blood pressure is seen. Firibastat is an antihypertensive drug that affects the brain renin angiotensin system by inhibiting aminopeptidase A. Clinical trials with firibastat have been performed in animals and humans. No severe adverse effects related to firibastat treatment have been reported. Results from studies show that firibastat is generally well tolerated and safe to use in hypertensive patients. The aim of this review is to investigate the current knowledge about firibastat in the treatment of hypertension.


Assuntos
Artérias/patologia , Dissulfetos/uso terapêutico , Hipertensão/tratamento farmacológico , Ácidos Sulfônicos/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Dissulfetos/química , Dissulfetos/farmacocinética , Dissulfetos/farmacologia , Humanos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacocinética , Ácidos Sulfônicos/farmacologia
9.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955775

RESUMO

Space travelers are exposed to microgravity (µg), which induces enhanced bone loss compared to the age-related bone loss on Earth. Microgravity promotes an increased bone turnover, and this obstructs space exploration. This bone loss can be slowed down by exercise on treadmills or resistive apparatus. The objective of this systematic review is to provide a current overview of the state of the art of the field of bone loss in space and possible treatment options thereof. A total of 482 unique studies were searched through PubMed and Scopus, and 37 studies met the eligibility criteria. The studies showed that, despite increased bone formation during µg, the increase in bone resorption was greater. Different types of exercise and pharmacological treatments with bisphosphonates, RANKL antibody (receptor activator of nuclear factor κß ligand antibody), proteasome inhibitor, pan-caspase inhibitor, and interleukin-6 monoclonal antibody decrease bone resorption and promote bone formation. Additionally, recombinant irisin, cell-free fat extract, cyclic mechanical stretch-treated bone mesenchymal stem cell-derived exosomes, and strontium-containing hydroxyapatite nanoparticles also show some positive effects on bone loss.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Voo Espacial , Ausência de Peso , Densidade Óssea , Osso e Ossos , Humanos , Receptor Ativador de Fator Nuclear kappa-B , Ausência de Peso/efeitos adversos
10.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555738

RESUMO

Breast cancer is the leading cause of cancer incidence worldwide and among the five leading causes of cancer mortality. Despite major improvements in early detection and new treatment approaches, the need for better outcomes and quality of life for patients is still high. Extracellular vesicles play an important role in tumor biology, as they are able to transfer information between cells of different origins and locations. Their potential value as biomarkers or for targeted tumor therapy is apparent. In this study, we analyzed the supernatants of MCF-7 breast cancer cells, which were harvested following 5 or 10 days of simulated microgravity on a Random Positioning Machine (RPM). The primary results showed a substantial increase in released vesicles following incubation under simulated microgravity at both time points. The distribution of subpopulations regarding their surface protein expression is also altered; the minimal changes between the time points hint at an early adaption. This is the first step in gaining further insight into the mechanisms of tumor progression, metastasis, the education of the tumor microenvironments, and preparation of the metastatic niche. Additionally, this may lighten up the processes of the rapid cellular adaptions in the organisms of space travelers during spaceflights.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Voo Espacial , Ausência de Peso , Humanos , Feminino , Qualidade de Vida , Simulação de Ausência de Peso , Microambiente Tumoral
11.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887223

RESUMO

The high mortality in men with metastatic prostate cancer (PC) establishes the need for diagnostic optimization by new biomarkers. Mindful of the effect of real microgravity on metabolic pathways of carcinogenesis, we attended a parabolic flight (PF) mission to perform an experiment with the PC cell line PC-3, and submitted the resulting RNA to next generation sequencing (NGS) and quantitative real-time PCR (qPCR). After the first parabola, alterations of the F-actin cytoskeleton-like stress fibers and pseudopodia are visible. Moreover, numerous significant transcriptional changes are evident. We were able to identify a network of relevant PC cytokines and chemokines showing differential expression due to gravitational changes, particularly during the early flight phases. Together with differentially expressed regulatory lncRNAs and micro RNAs, we present a portfolio of 298 potential biomarkers. Via qPCR we identified IL6 and PIK3CB to be sensitive to vibration effects and hypergravity, respectively. Per NGS we detected five upregulated cytokines (CCL2, CXCL1, IL6, CXCL2, CCL20), one zink finger protein (TNFAIP3) and one glycoprotein (ICAM1) related to c-REL signaling and thus relevant for carcinogenesis as well as inflammatory aspects. We found regulated miR-221 and the co-localized lncRNA MIR222HG induced by PF maneuvers. miR-221 is related to the PC-3 growth rate and MIR222HG is a known risk factor for glioma susceptibility. These findings in real microgravity may further improve our understanding of PC and contribute to the development of new diagnostic tools.


Assuntos
MicroRNAs , Neoplasias da Próstata , Voo Espacial , Ausência de Peso , Carcinogênese , Citocinas/genética , Humanos , Interleucina-6 , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética
12.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328492

RESUMO

Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.


Assuntos
Neoplasias , Ausência de Peso , Humanos , Masculino , Organoides , Esferoides Celulares , Simulação de Ausência de Peso
13.
Semin Cancer Biol ; 67(Pt 1): 122-153, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30914279

RESUMO

Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.


Assuntos
Neoplasias/patologia , Fatores de Transcrição SOX/metabolismo , Animais , Humanos , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição SOX/genética , Transdução de Sinais
14.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669062

RESUMO

Obstructive sleep apnea (OSA) is a common disease, with approximately 3-7% of men and 2-5% of women worldwide suffering from symptomatic OSA. If OSA is left untreated, hypoxia, microarousals and increased chemoreceptor stimulation can lead to complications like hypertension (HT). Continuous positive airway pressure (CPAP) is the most common treatment for OSA, and it works by generating airway patency, which will counteract the apnea or hypopnea. More than one billion people in the world suffer from HT, and the usual treatment is pharmacological with antihypertensive medication (AHM). The focus of this review will be to investigate whether the CPAP therapy for OSA affects HT.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/efeitos adversos , Hipertensão/complicações , Apneia Obstrutiva do Sono/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/farmacologia , Feminino , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Apneia Obstrutiva do Sono/complicações
15.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830100

RESUMO

Differentiated thyroid cancer (DTC) usually has a good prognosis when treated conventionally with thyroidectomy, radioactive iodine (RAI) and thyroid-stimulating hormone suppression, but some tumors develop a resistance to RAI therapy, requiring alternative treatments. Sorafenib, lenvatinib and cabozantinib are multikinase inhibitors (MKIs) approved for the treatment of RAI-refractory DTC. The drugs have been shown to improve progression-free survival (PFS) and overall survival (OS) via the inhibition of different receptor tyrosine kinases (RTKs) that are involved in tumorigenesis and angiogenesis. Both sorafenib and lenvatinib have been approved irrespective of the line of therapy for the treatment of RAI-refractory DTC, whereas cabozantinib has only been approved as a second-line treatment. Adverse effects (AEs) such as hypertension are often seen with MKI treatment, but are generally well manageable. In this review, current clinical studies will be discussed, and the toxicity and safety of sorafenib, lenvatinib and cabozantinib treatment will be evaluated, with a focus on AE hypertension and its treatment options. In short, treatment-emergent hypertension (TE-HTN) occurs with all three drugs, but is usually well manageable and leads only to a few dose modifications or even discontinuations. This is emphasized by the fact that lenvatinib is widely considered the first-line drug of choice, despite its higher rate of TE-HTN.


Assuntos
Antineoplásicos/uso terapêutico , Hipertensão , Radioisótopos do Iodo/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias da Glândula Tireoide , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/terapia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/fisiopatologia
16.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884646

RESUMO

As much as space travel and exploration have been a goal since humankind looked up to the stars, the challenges coming with it are manifold and difficult to overcome. Therefore, researching the changes the human organism undergoes following exposure to weightlessness, on a cellular or a physiological level, is imperative to reach the goal of exploring space and new planets. Building on the results of our CellBox-1 experiment, where thyroid cancer cells were flown to the International Space Station, we are now taking advantage of the newest technological opportunities to gain more insight into the changes in cell-cell communication of these cells. Analyzing the exosomal microRNA composition after several days of microgravity might elucidate some of the proteomic changes we have reported earlier. An array scan of a total of 754 miRNA targets revealed more than 100 differentially expressed miRNAs in our samples, many of which have been implicated in thyroid disease in other studies.


Assuntos
Exossomos/genética , Meio Ambiente Extraterreno , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/genética , Ausência de Peso , Linhagem Celular Tumoral , Exossomos/metabolismo , Humanos , MicroRNAs/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
17.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669943

RESUMO

Space travel has always been the man's ultimate destination. With the ability of spaceflight though, came the realization that exposure to microgravity has lasting effects on the human body. To counteract these, many studies were and are undertaken, on multiple levels. Changes in cell growth, gene, and protein expression have been described in different models on Earth and in space. Extracellular vesicles, and in particular exosomes, are important cell-cell communicators, being secreted from almost all the cells and therefore, are a perfect target to further investigate the underlying reasons of the organism's adaptations to microgravity. Here, we studied supernatants harvested from the CellBox-1 experiment, which featured human thyroid cancer cells flown to the International Space Station during the SpaceX CRS-3 cargo mission. The initial results show differences in the number of secreted exosomes, as well as in the distribution of subpopulations in regards to their surface protein expression. Notably, alteration of their population regarding the tetraspanin surface expression was observed. This is a promising step into a new area of microgravity research and will potentially lead to the discovery of new biomarkers and pathways of cellular cross-talk.


Assuntos
Exossomos/metabolismo , Voo Espacial , Neoplasias da Glândula Tireoide/metabolismo , Ausência de Peso , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Fluorescência , Humanos , Interferometria , Tamanho da Partícula
18.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445479

RESUMO

A spaceflight to the International Space Station (ISS) is a dream of many researchers. We had the chance to investigate the effect of real microgravity (CellBox-2 Space mission) on the transcriptome and proteome of FTC-133 human follicular thyroid cancer cells (TCC). The cells had been sent to the ISS by a Falcon 9 rocket of SpaceX CRS-13 from Cape Canaveral (United States) and cultured in six automated hardware units on the ISS before they were fixed and returned to Earth. Multicellular spheroids (MCS) were detectable in all spaceflight hardware units. The VCL, PXN, ITGB1, RELA, ERK1 and ERK2 mRNA levels were significantly downregulated after 5 days in space in adherently growing cells (AD) and MCS compared with ground controls (1g), whereas the MIK67 and SRC mRNA levels were both suppressed in MCS. By contrast, the ICAM1, COL1A1 and IL6 mRNA levels were significantly upregulated in AD cells compared with 1g and MCS. The protein secretion measured by multianalyte profiling technology and enzyme-linked immunosorbent assay (AngiogenesisMAP®, extracellular matrix proteins) was not significantly altered, with the exception of elevated angiopoietin 2. TCC in space formed MCS, and the response to microgravity was mainly anti-proliferative. We identified ERK/RELA as a major microgravity regulatory pathway.


Assuntos
Adenocarcinoma Folicular/patologia , Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Esferoides Celulares/patologia , Neoplasias da Glândula Tireoide/patologia , Transcriptoma , Ausência de Peso , Adenocarcinoma Folicular/genética , Adenocarcinoma Folicular/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteoma/análise , Voo Espacial , Esferoides Celulares/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas
19.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143440

RESUMO

The adhesion behavior of human tissue cells changes in vitro, when gravity forces affecting these cells are modified. To understand the mechanisms underlying these changes, proteins involved in cell-cell or cell-extracellular matrix adhesion, their expression, accumulation, localization, and posttranslational modification (PTM) regarding changes during exposure to microgravity were investigated. As the sialylation of adhesion proteins is influencing cell adhesion on Earth in vitro and in vivo, we analyzed the sialylation of cell adhesion molecules detected by omics studies on cells, which change their adhesion behavior when exposed to microgravity. Using a knowledge graph created from experimental omics data and semantic searches across several reference databases, we studied the sialylation of adhesion proteins glycosylated at their extracellular domains with regards to its sensitivity to microgravity. This way, experimental omics data networked with the current knowledge about the binding of sialic acids to cell adhesion proteins, its regulation, and interactions in between those proteins provided insights into the mechanisms behind our experimental findings, suggesting that balancing the sialylation against the de-sialylation of the terminal ends of the adhesion proteins' glycans influences their binding activity. This sheds light on the transition from two- to three-dimensional growth observed in microgravity, mirroring cell migration and cancer metastasis in vivo.


Assuntos
Adesão Celular , Processamento de Proteína Pós-Traducional , Ausência de Peso , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Bases de Dados Factuais , Matriz Extracelular/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrinas/metabolismo , Células MCF-7 , Camundongos , Metástase Neoplásica , Domínios Proteicos , Proteoma , Ácidos Siálicos/química
20.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339388

RESUMO

Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.


Assuntos
Cartilagem/citologia , Engenharia Tecidual/métodos , Simulação de Ausência de Peso/instrumentação , Cartilagem/metabolismo , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno/genética , Colágeno/metabolismo , Subunidades alfa de Fatores de Ligação ao Core/genética , Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Meios de Cultura/química , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Fatores de Transcrição SOX , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Engenharia Tecidual/instrumentação , Vimentina/genética , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA