Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791511

RESUMO

G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.


Assuntos
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Bioensaio/métodos
2.
Cereb Cortex ; 30(6): 3590-3607, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32055848

RESUMO

Auditory cortex (AC) is necessary for the detection of brief gaps in ongoing sounds, but not for the detection of longer gaps or other stimuli such as tones or noise. It remains unclear why this is so, and what is special about brief gaps in particular. Here, we used both optogenetic suppression and conventional lesions to show that the cortical dependence of brief gap detection hinges specifically on gap termination. We then identified a cortico-collicular gap detection circuit that amplifies cortical gap termination responses before projecting to inferior colliculus (IC) to impact behavior. We found that gaps evoked off-responses and on-responses in cortical neurons, which temporally overlapped for brief gaps, but not long gaps. This overlap specifically enhanced cortical responses to brief gaps, whereas IC neurons preferred longer gaps. Optogenetic suppression of AC reduced collicular responses specifically to brief gaps, indicating that under normal conditions, the enhanced cortical representation of brief gaps amplifies collicular gap responses. Together these mechanisms explain how and why AC contributes to the behavioral detection of brief gaps, which are critical cues for speech perception, perceptual grouping, and auditory scene analysis.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Animais , Córtex Auditivo/citologia , Colículos Inferiores/citologia , Camundongos , Vias Neurais , Optogenética , Detecção de Sinal Psicológico
3.
Cell Mol Life Sci ; 76(19): 3915, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31377842

RESUMO

The article Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays, written by Jan P. Wintgens, Sven P. Wichert, Luksa Popovic, Moritz J. Rossner and Michael C. Wehr, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 8 January 2019 without open access.

4.
Cell Mol Life Sci ; 76(6): 1185-1199, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30623207

RESUMO

Receptor tyrosine kinases (RTKs) play key roles in various aspects of cell biology, including cell-to-cell communication, proliferation and differentiation, survival, and tissue homeostasis, and have been implicated in various diseases including cancer and neurodevelopmental disorders. Ligand-activated RTKs recruit adapter proteins through a phosphotyrosine (p-Tyr) motif that is present on the RTK and a p-Tyr-binding domain, like the Src homology 2 (SH2) domain found in adapter proteins. Notably, numerous combinations of RTK/adapter combinations exist, making it challenging to compare receptor activities in standardised assays. In cell-based assays, a regulated adapter recruitment can be investigated using genetically encoded protein-protein interaction detection methods, such as the split TEV biosensor assay. Here, we applied the split TEV technique to robustly monitor the dynamic recruitment of both naturally occurring full-length adapters and artificial adapters, which are formed of clustered SH2 domains. The applicability of this approach was tested for RTKs from various subfamilies including the epidermal growth factor (ERBB) family, the insulin receptor (INSR) family, and the hepatocyte growth factor receptor (HGFR) family. Best signal-to-noise ratios of ligand-activated RTK receptor activation was obtained when clustered SH2 domains derived from GRB2 were used as adapters. The sensitivity and robustness of the RTK recruitment assays were validated in dose-dependent inhibition assays using the ERBB family-selective antagonists lapatinib and WZ4002. The RTK split TEV recruitment assays also qualify for high-throughput screening approaches, suggesting that the artificial adapter may be used as universal adapter in cell-based profiling assays within pharmacological intervention studies.


Assuntos
Bioensaio/métodos , Proteína Adaptadora GRB2/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Domínios de Homologia de src , Células A549 , Acrilamidas/metabolismo , Acrilamidas/farmacologia , Animais , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Proteína Adaptadora GRB2/genética , Humanos , Lapatinib/metabolismo , Lapatinib/farmacologia , Células PC12 , Ligação Proteica/efeitos dos fármacos , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Ratos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Reprodutibilidade dos Testes
5.
J Acoust Soc Am ; 145(3): 1168, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31067917

RESUMO

Speech is perceived as a series of relatively invariant phonemes despite extreme variability in the acoustic signal. To be perceived as nearly-identical phonemes, speech sounds that vary continuously over a range of acoustic parameters must be perceptually discretized by the auditory system. Such many-to-one mappings of undifferentiated sensory information to a finite number of discrete categories are ubiquitous in perception. Although many mechanistic models of phonetic perception have been proposed, they remain largely unconstrained by neurobiological data. Current human neurophysiological methods lack the necessary spatiotemporal resolution to provide it: speech is too fast, and the neural circuitry involved is too small. This study demonstrates that mice are capable of learning generalizable phonetic categories, and can thus serve as a model for phonetic perception. Mice learned to discriminate consonants and generalized consonant identity across novel vowel contexts and speakers, consistent with true category learning. A mouse model, given the powerful genetic and electrophysiological tools for probing neural circuits available for them, has the potential to powerfully augment a mechanistic understanding of phonetic perception.

6.
J Neurophysiol ; 120(1): 105-114, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589814

RESUMO

Synaptic inhibition shapes the temporal processing of sounds in auditory cortex, but the contribution of specific inhibitory cell types to temporal processing remains unclear. We recorded from parvalbumin-expressing (PV+) interneurons in auditory cortex to determine how they encode gaps in noise, a model of temporal processing more generally. We found that PV+ cells had stronger and more prevalent on-responses, off-responses, and postresponse suppression compared with presumed pyramidal cells. We summarize this pattern of differences as "deeper modulation" of gap responses in PV+ cells. Response latencies were also markedly faster for PV+ cells. We found a similar pattern of deeper modulation and faster latencies for responses to white noise bursts, suggesting that these are general properties of on- and off-responses in PV+ cells rather than specific features of gap encoding. These findings are consistent with a role for PV+ cells in providing dynamic gain control by pooling local activity. NEW & NOTEWORTHY We found that parvalbumin-expressing (PV+) interneurons in auditory cortex showed more deeply modulated responses to both gaps in noise and bursts of noise, suggesting that they are optimized for the rapid detection of stimulus transients.


Assuntos
Córtex Auditivo/fisiologia , Interneurônios/fisiologia , Animais , Córtex Auditivo/citologia , Percepção Auditiva , Feminino , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/genética , Parvalbuminas/metabolismo , Células Piramidais/fisiologia
7.
Mol Cell ; 39(4): 521-34, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20797625

RESUMO

The Hippo (Hpo) pathway is a central determinant of tissue size in both Drosophila and higher organisms. The core of the pathway is a kinase cascade composed of an upstream kinase Hpo (MST1/2 in mammals) and a downstream kinase Warts (Wts, Lats1/2 in mammals), as well as several scaffold proteins, Sav, dRASSF, and Mats. Activation of the core kinase cassette results in phosphorylation and inactivation of the progrowth transcriptional coactivator Yki, leading to increased apoptosis and reduced tissue growth. The mechanisms that prevent inappropriate Hpo activation remain unclear, and in particular, the identity of the phosphatase that antagonizes Hpo is unknown. Using combined proteomic and RNAi screening approaches, we identify the dSTRIPAK PP2A complex as a major regulator of Hpo signaling. dSTRIPAK depletion leads to increased Hpo activatory phosphorylation and repression of Yki target genes in vivo, suggesting this phosphatase complex prevents Hpo activation during development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Genômica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica , Transdução de Sinais , Animais , Apoptose , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proliferação de Células , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/ultraestrutura , Genômica/métodos , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexos Multienzimáticos , Proteínas Nucleares/metabolismo , Fenótipo , Fosforilação , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/genética , Proteômica/métodos , Interferência de RNA , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Transativadores/metabolismo , Transfecção , Proteínas de Sinalização YAP
8.
J Neurosci ; 34(46): 15437-45, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392510

RESUMO

Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Estimulação Acústica , Potenciais de Ação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/fisiologia , Neurônios/fisiologia , Optogenética , Fatores de Tempo
9.
Mol Biol Evol ; 31(7): 1710-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682284

RESUMO

The scaffolding protein KIBRA (also called WWC1) is involved in the regulation of important intracellular transport processes and the establishment of cell polarity. Furthermore, KIBRA/WWC1 is an upstream regulator of the Hippo signaling pathway that controls cell proliferation and organ size in animals. KIBRA/WWC1 represents only one member of the WWC protein family that also includes the highly similar proteins WWC2 and WWC3. Although the function of KIBRA/WWC1 was studied intensively in cells and animal models, the importance of WWC2 and WWC3 was not yet elucidated. Here, we describe evolutionary, molecular, and functional aspects of the WWC family. We show that the WWC genes arose in the ancestor of bilateral animals (clades such as insects and vertebrates) from a single founder gene most similar to the present KIBRA/WWC1-like sequence of Drosophila. This situation was still maintained until the common ancestor of lancelet and vertebrates. In fish, a progenitor-like sequence of mammalian KIBRA/WWC1 and WWC2 is expressed together with WWC3. Finally, in all tetrapods, the three family members, KIBRA/WWC1, WWC2, and WWC3, are found, except for a large genomic deletion including WWC3 in Mus musculus. At the molecular level, the highly conserved WWC proteins share a similar primary structure, the ability to form homo- and heterodimers and the interaction with a common set of binding proteins. Furthermore, all WWC proteins negatively regulate cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP, the major effector of the Hippo pathway.


Assuntos
Proteínas de Transporte/genética , Fosfoproteínas/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Transporte/metabolismo , Proliferação de Células , Evolução Molecular , Células HEK293 , Humanos , Família Multigênica , Especificidade de Órgãos , Fosfoproteínas/metabolismo , Filogenia , Deleção de Sequência , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
10.
J Neurosci ; 33(34): 13713-23, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966693

RESUMO

In the auditory cortex, synaptic inhibition is known to be involved in shaping receptive fields, enhancing temporal precision, and regulating gain. Cortical inhibition is provided by local GABAergic interneurons, which comprise 10-20% of the cortical population and can be separated into numerous subclasses. The morphological and physiological diversity of interneurons suggests that these different subclasses have unique roles in sound processing; however, these roles are yet unknown. Understanding the receptive field properties of distinct inhibitory cell types will be critical to elucidating their computational function in cortical circuits. Here we characterized the tuning and response properties of parvalbumin-positive (PV+) interneurons, the largest inhibitory subclass. We used channelrhodopsin-2 (ChR2) as an optogenetic tag to identify PV+ and PV- neurons in vivo in transgenic mice. In contrast to PV+ neurons in mouse visual cortex, which are broadly tuned for orientation, we found that auditory cortical PV+ neurons were well tuned for frequency, although very tightly tuned PV+ cells were uncommon. This suggests that PV+ neurons play a minor role in shaping frequency tuning, and is consistent with the idea that PV+ neurons nonselectively pool input from the local network. PV+ interneurons had shallower response gain and were less intensity-tuned than PV- neurons, suggesting that PV+ neurons provide dynamic gain control and shape intensity tuning in auditory cortex. PV+ neurons also had markedly faster response latencies than PV- neurons, consistent with a computational role in enhancing the temporal precision of cortical responses.


Assuntos
Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Interneurônios/metabolismo , Inibição Neural/fisiologia , Parvalbuminas/metabolismo , Estimulação Acústica , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Channelrhodopsins , Feminino , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Parvalbuminas/genética , Técnicas de Patch-Clamp , Estimulação Luminosa , Tempo de Reação/fisiologia , Estatísticas não Paramétricas
11.
J Neurosci ; 33(22): 9364-84, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719805

RESUMO

In vitro studies suggest that the intracellular C terminus of Neuroligin1 (NL1) could play a central role in the maturation of excitatory synapses. However, it is unknown how this activity affects synapses in vivo, and whether it may impact the development of complex behaviors. To determine how NL1 influences the state of glutamatergic synapses in vivo, we compared the synaptic and behavioral phenotypes of mice overexpressing a full-length version of NL1 (NL1FL) with mice overexpressing a version missing part of the intracellular domain (NL1ΔC). We show that overexpression of full-length NL1 yielded an increase in the proportion of synapses with mature characteristics and impaired learning and flexibility. In contrast, the overexpression of NL1ΔC increased the number of excitatory postsynaptic structures and led to enhanced flexibility in mnemonic and social behaviors. Transient overexpression of NL1FL revealed that elevated levels are not necessary to maintain synaptic and behavioral states altered earlier in development. In contrast, overexpression of NL1FL in the fully mature adult was able to impair normal learning behavior after 1 month of expression. These results provide the first evidence that NL1 significantly impacts key developmental processes that permanently shape circuit function and behavior, as well as the function of fully developed neural circuits. Overall, these manipulations of NL1 function illuminate the significance of NL1 intracellular signaling in vivo, and enhance our understanding of the factors that gate the maturation of glutamatergic synapses and complex behavior. This has significant implications for our ability to address disorders such as autism spectrum disorders.


Assuntos
Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Sinapses/fisiologia , Animais , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Western Blotting , Moléculas de Adesão Celular Neuronais/genética , Espinhas Dendríticas/fisiologia , Espinhas Dendríticas/ultraestrutura , Doxiciclina/farmacologia , Fenômenos Eletrofisiológicos , Proteínas de Fluorescência Verde , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/psicologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico , Comportamento Social , Predomínio Social , Sinaptossomos/fisiologia
12.
J Neurophysiol ; 111(5): 930-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335208

RESUMO

How does the brain accomplish sound localization with invariance to total sound level? Sensitivity to interaural level differences (ILDs) is first computed at the lateral superior olive (LSO) and is observed at multiple levels of the auditory pathway, including the central nucleus of inferior colliculus (ICC) and auditory cortex. In LSO, this ILD sensitivity is level-dependent, such that ILD response functions shift toward the ipsilateral (excitatory) ear with increasing sound level. Thus early in the processing pathway changes in firing rate could indicate changes in sound location, sound level, or both. In ICC, while ILD responses can shift toward either ear in individual neurons, there is no net ILD response shift at the population level. In behavioral studies of human sound localization acuity, ILD sensitivity is invariant to increasing sound levels. Level-invariant sound localization would suggest transformation in level sensitivity between LSO and perception of sound sources. Whether this transformation is completed at the level of the ICC or continued at higher levels remains unclear. It also remains unknown whether perceptual sound localization is level-invariant in rats, as it is in humans. We asked whether ILD sensitivity is level-invariant in rat auditory cortex. We performed single-unit and whole cell recordings in rat auditory cortex under ketamine anesthesia and measured responses to white noise bursts presented through sealed earphones at a range of ILDs. Surprisingly, we found that with increasing sound levels ILD responses shifted toward the ipsilateral ear (which is typically inhibitory), regardless of whether cells preferred ipsilateral, contralateral, or binaural stimuli. Voltage-clamp recordings suggest that synaptic inhibition does not contribute substantially to this transformation in level sensitivity. We conclude that the level invariance of ILD sensitivity seen in behavioral studies is not present in rat auditory cortex.


Assuntos
Córtex Auditivo/fisiologia , Neurônios/fisiologia , Localização de Som/fisiologia , Estimulação Acústica , Animais , Ratos , Ratos Sprague-Dawley
13.
J Neurophysiol ; 112(10): 2561-71, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25185807

RESUMO

The interaural level difference (ILD) is a sound localization cue that is extensively processed in the auditory brain stem and midbrain and is also represented in the auditory cortex. Here, we asked whether neurons in the auditory cortex passively inherit their ILD tuning from subcortical sources or whether their spiking preferences were actively shaped by local inhibition. If inherited, the ILD selectivity of spiking output should match that of excitatory synaptic input. If shaped by local inhibition, by contrast, excitation should be more broadly tuned than spiking output with inhibition suppressing spiking for nonpreferred stimuli. To distinguish between these two processing strategies, we compared spiking responses with excitation and inhibition in the same neurons across a range of ILDs and average binaural sound levels. We found that cells preferring contralateral ILDs (often called EI cells) followed the inheritance strategy. In contrast, cells that were unresponsive to monaural sounds but responded predominantly to near-zero ILDs (PB cells) instead showed evidence of the local processing strategy. These PB cells received excitatory inputs that were similar to those received by the EI cells. However, contralateral monaural sounds and ILDs >0 dB elicited strong inhibition, quenching the spiking output. These results suggest that in the rat auditory cortex, EI cells do not utilize inhibition to shape ILD sensitivity, whereas PB cells do. We conclude that an auditory cortical circuit computes sensitivity for near-zero ILDs.


Assuntos
Córtex Auditivo/fisiologia , Localização de Som/fisiologia , Transmissão Sináptica/fisiologia , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Microeletrodos , Inibição Neural/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos Sprague-Dawley
14.
STAR Protoc ; 5(2): 102987, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635397

RESUMO

The ERBBprofiler assay measures compound effects on ERBB family receptors and key downstream signaling pathways that are implicated in cancer or other complex diseases. Here, we present a protocol for identifying properties of ERBB receptor antagonists using the barcoded ERBBprofiler assay. We describe steps for in-solution transfection, cell treatment, combined processing of samples, amplification and indexing of PCRs, sequencing, and data analysis. This approach allows for the simultaneous assessment of drug effects and cell-type-dependent effects. For complete details on the use and execution of this protocol, please refer to Popovic et al.1.


Assuntos
Receptores ErbB , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38617286

RESUMO

Performance during perceptual decision-making exhibits an inverted-U relationship with arousal, but the underlying network mechanisms remain unclear. Here, we recorded from auditory cortex (A1) of behaving mice during passive tone presentation, while tracking arousal via pupillometry. We found that tone discriminability in A1 ensembles was optimal at intermediate arousal, revealing a population-level neural correlate of the inverted-U relationship. We explained this arousal-dependent coding using a spiking network model with a clustered architecture. Specifically, we show that optimal stimulus discriminability is achieved near a transition between a multi-attractor phase with metastable cluster dynamics (low arousal) and a single-attractor phase (high arousal). Additional signatures of this transition include arousal-induced reductions of overall neural variability and the extent of stimulus-induced variability quenching, which we observed in the empirical data. Altogether, this study elucidates computational principles underlying interactions between pupil-linked arousal, sensory processing, and neural variability, and suggests a role for phase transitions in explaining nonlinear modulations of cortical computations.

16.
iScience ; 27(2): 108839, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303712

RESUMO

ERBB receptor tyrosine kinases are involved in development and diseases like cancer, cardiovascular, neurodevelopmental, and mental disorders. Although existing drugs target ERBB receptors, the next generation of drugs requires enhanced selectivity and understanding of physiological pathway responses to improve efficiency and reduce side effects. To address this, we developed a multilevel barcoded reporter profiling assay, termed 'ERBBprofiler', in living cells to monitor the activity of all ERBB targets and key physiological pathways simultaneously. This assay helps differentiate on-target therapeutic effects from off-target and off-pathway side effects of ERBB antagonists. To challenge the assay, eight established ERBB antagonists were profiled. Known effects were confirmed, and previously uncharacterized properties were discovered, such as pyrotinib's preference for ERBB4 over EGFR. Additionally, two lead compounds selectively targeting ERBB4 were profiled, showing promise for clinical trials. Taken together, this multiparametric profiling approach can guide early-stage drug development and lead to improved future therapeutic interventions.

17.
Cell Signal ; 113: 110917, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813295

RESUMO

The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Proliferação de Células , Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais/genética
18.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260577

RESUMO

Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionistic cellular model system for polygenic risk by differentiating induced pluripotent stem cells (iPSCs) from 104 individuals with high polygenic risk load and controls into cortical glutamatergic neurons (iNs). Multi-omics profiling identified widespread differences in alternative polyadenylation (APA) in the 3' untranslated region of many synaptic transcripts between iNs from SCZ patients and healthy donors. On the cellular level, 3'APA was associated with a reduction in synaptic density of iNs. Importantly, differential APA was largely conserved between postmortem human prefrontal cortex from SCZ patients and healthy donors, and strongly enriched for transcripts related to synapse biology. 3'APA was highly correlated with SCZ polygenic risk and affected genes were significantly enriched for SCZ associated common genetic variation. Integrative functional genomic analysis identified the RNA binding protein and SCZ GWAS risk gene PTBP2 as a critical trans-acting factor mediating 3'APA of synaptic genes in SCZ subjects. Functional characterization of PTBP2 in iNs confirmed its key role in 3'APA of synaptic transcripts and regulation of synapse density. Jointly, our findings show that the aggregated effects of polygenic risk converge on 3'APA as one common molecular mechanism that underlies synaptic impairments in SCZ.

19.
Sci Signal ; 17(834): eadj6603, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687825

RESUMO

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Assuntos
Hipocampo , Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinases , Receptores de AMPA , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Masculino , Humanos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Camundongos , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Via de Sinalização Hippo , Serina-Treonina Quinase 3 , Transdução de Sinais , Memória/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Fator de Crescimento de Hepatócito/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Fosforilação , Neurônios/metabolismo
20.
Biol Psychiatry Glob Open Sci ; 3(4): 632-641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881564

RESUMO

Background: Psychiatric and metabolic disorders occur disproportionately often comorbidly, which poses particular hurdles for patients and therapists. However, the mechanisms that promote such comorbidities are largely unknown and therefore cannot yet be therapeutically targeted for the simultaneous treatment of both conditions. Because circadian clocks regulate most physiological processes and their disruption is a risk factor for both psychiatric and metabolic disorders, they may be considered as a potential mechanism for the development of comorbidities and a therapeutic target. In the current study, we investigated the latter assumption in Cry1/2-/- mice, which exhibit substantially disrupted endogenous circadian rhythms and marked metabolic and behavioral deficits. Methods: By targeted virus-induced restoration of circadian rhythms in their suprachiasmatic nucleus, we can restore behavioral as well as several metabolic processes of these animals to near-normal circadian rhythmicity. Results: Importantly, by rescuing suprachiasmatic nucleus rhythms, several of their anxiety-like behavioral as well as diabetes- and energy homeostasis-related deficits were significantly improved. Interestingly, however, this did not affect all deficits typical of Cry1/2-/- mice; for example, restlessness and body weight remained unaffected. Conclusions: Taken together, the results of this study demonstrate, on the one hand, that restoration of disturbed circadian rhythms can be used to simultaneously treat psychiatric and metabolic deficits. On the other hand, the results also allow us to distinguish processes that depend more on local canonical clocks from those that depend more on suprachiasmatic nucleus rhythms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA