Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Environ Sci (China) ; 138: 531-542, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135418

RESUMO

The environmental presence of decabromodiphenyl ether (BDE-209), which is toxic to the male reproductive system, is widespread. The current study investigated its mechanism of toxicity in mice. The results showed, that BDE-209 induced DNA damage, decreased the expression of the promoter of meiosis spermatogenesis- and oogenesis-specific basic helix-loop-helix 1 (Sohlh1), meiosis related-factors Lethal (3) malignant brain tumor like 2 (L3MBTL2), PIWI-like protein 2 (MILI), Cyclin-dependent kinase 2 (CDK2), Cyclin A, synaptonemal complex protein 1 (SYCP1) and synaptonemal complex protein 3 (SYCP3), and caused spermatogenic cell apoptosis, resulting in a decrease in sperm quantity and quality. Furthermore, BDE-209 downregulated the levels of anaphase-promoting complex/cyclosome (APC/C), increased the expression of PIWI-like protein 1 (MIWI) in the cytoplasm of elongating spermatids, and decreased the nuclear levels of RING finger protein 8 (RNF8), ubiquitinated (ub)-H2A/ub-H2B, and Protamine 1 (PRM1)/Protamine 2 (PRM2), while increasing H2A/H2B nuclear levels in spermatids. The reproductive toxicity was persistent for 50 days following the withdrawal of BDE-209 exposure. The results suggested that BDE-209 inhibits the initiation of meiosis by decreasing the expression of Sohlh1. Furthermore, the reduced expression of L3MBTL2 inhibited the formation of chromosomal synaptonemal complexes by depressing the expression of meiosis regulators affecting the meiotic progression and also inhibited histone ubiquitination preventing the replacement of histones by protamines, by preventing RNF8 from entering nuclei, which affected the evolution of spermatids into mature sperm.


Assuntos
Espermátides , Espermatócitos , Masculino , Camundongos , Animais , Espermátides/metabolismo , Espermatócitos/metabolismo , Sêmen , Cromossomos
2.
Ecotoxicol Environ Saf ; 246: 114165, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228355

RESUMO

Decabromodiphenyl ethane (DBDPE) is a typical flame retardant found in various electrical and textile items. DBDPE is abundantly available in the surrounding environment and wild animals based on its persistence and bioaccumulation. DBDPE has been shown to cause apoptosis in rat spermatogenic cells, resulting in reproductive toxicity. However, the toxicity of DBDPE on the male reproductive system and the potential mechanisms are still unclear. This study evaluated the effect of DBDPE on the reproductive system in male SD rats and demonstrated the potential mechanisms of reproductive toxicity. DBDPE (0, 5, 50, and 500 mg/kg/day) was administered via gavage to male SD rats for 28 days. DBDPE caused histopathological changes in the testis, reduced sperm quantity and motility, and raised the malformation rate in rats, according to the findings. Furthermore, it caused DNA damage to rat testicular cells. It inhibited the expressions of spermatogenesis-and oogenesis-specific helix-loop-helix transcription factor 1 (Sohlh1), piwi-like RNA-mediated gene silencing 2 (MILI), cyclin-dependent kinase 2 (CDK2), and CyclinA, resulting in meiotic failure, as well as the expressions of synaptonemal complex proteins 1 and 3 (SYCP1 and SYCP3), leading to chromosomal association disorder in meiosis and spermatocyte cycle arrest. Moreover, DBDPE induced glycolipid metabolism disorder and activated mitochondria-mediated apoptosis pathways in the testes of SD rats. The quantity and quality of sperm might be declining due to these factors. Our findings offer further evidence of the harmful impact of DBDPE on the male reproductive system.


Assuntos
Retardadores de Chama , Sêmen , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Bromobenzenos , Retardadores de Chama/toxicidade , Glicolipídeos
3.
Ecotoxicol Environ Saf ; 237: 113534, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35462195

RESUMO

Decabromodiphenyl ethane (DBDPE) is a major alternative to BDE-209 owing to its lower toxicity. However, the mass production and increased consumption of DBDPE in recent years have raised concerns related to its adverse health effects. However, the effect and mechanism of DBDPE on cardiotoxicity have rarely been studied. In the present study, we investigated the impacts of DBDPE on the cardiovascular system in male SD rats and then explored the underlying mechanisms to explain the cardiotoxicity of DBDPE using AC16 cells. Under in vivo conditions, male rats were administered with an oral dosage of DBDPE at 0, 5, 50, and 500 mg/kg/day for 28 days, respectively. Histopathological analysis demonstrated that DBDPE induced cardiomyocyte injury and fibrosis, and ultrastructural observation revealed that DBDPE could induce mitochondria damage and dissolution. DBDPE could thus decrease the level of MYH6 and increase the level of SERCA2, which are the two key proteins involved in the maintenance of homeostasis during myocardial contractile and diastolic processes. Furthermore, DBDPE could increase the serum levels of glucose and low-density lipoprotein but decrease the content of high-density lipoprotein. In addition, DBDPE could activate the PI3K/AKT/GLUT2 and PPARγ/RXRα signaling pathways in AC16 cells. In addition, DBDPE decreased the UCP2 level and ATP synthesis in mitochondria both under in vitro and in vivo conditions, consequently leading to apoptosis via the Cytochrome C/Caspase-9/Caspase-3 pathway. Bisulfite sequencing PCR (BSP) identified the hypermethylation status of fat mass and obesity-associated gene (FTO). 5-aza exerted the opposite effects on the PI3K/AKT/GLUT2, PPARγ/RXRα, and Cytochrome C/Caspase-9/Caspase-3 signaling pathways induced by DBDPE in AC16 cells. In addition, the DBDPE-treated altered levels of UCP2, ATP, and apoptosis were also found to be significantly reversed by 5-aza in AC16 cells. These results suggested that FTO hypermethylation played a regulative role in the pathological process of DBDPE-induced glycolipid metabolism disorder, thereby contributing to the dysfunction of myocardial contraction and relaxation through cardiomyocytes fibrosis and apoptosis via the mitochondrial-mediated apoptotic pathway resulting from mitochondrial dysfunction.


Assuntos
Cardiopatias , Fosfatidilinositol 3-Quinases , Trifosfato de Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Apoptose , Bromobenzenos , Cardiotoxicidade , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Fibrose , Masculino , Obesidade , PPAR gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Environ Toxicol ; 36(5): 935-944, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404188

RESUMO

The extensive existing of microplastics (MPs) in the ecosystem have increased considerable attention concerning their potential adverse effects, the toxicities and the underlying mechanism of MPs are still scarce. To explore the effect of MPs on cardiac tissue in Wistar rats and unravel the mechanism of pyroptosis and oxidative stress in the process of cardiomyocytes injury, 32 male Wister rats were divided into control group and three model groups, which were exposed to 0.5 mm PS MPs at 0.5, 5 and 50 mg/L for 90 days. Results revealed that MPs could damage cardiac structure and function with impaired mitochondria integrity, as well as increased levels of creatine kinase-MB and cardiac troponinI (cTnI). Moreover, MPs administration triggered oxidative stress as indicated by increased levels of malondialdehyde and decreased activity of superoxide dismutase, glutathione peroxidase and catalase. Treatment with MPs resulted in apoptosis and pyroptosis as evidenced by increasing expressions of interleukin (IL)-1ß, IL-18. Additionally, MPs were shown to induce the NOD-like receptor protein 3 inflammasomes activation in cardiac tissue, enabling activation of Caspase-1-dependent signaling pathway induced by inflammatory stimuli resulting from oxidative stress. In summary, these results illustrated that pyroptosis played a vital role in polystyrene MPs-induced cardiotoxicity, which might be helpful to understand the mechanism of cardiac dysfunction and induced by MPs.


Assuntos
Microplásticos , Piroptose , Animais , Caspase 1/metabolismo , Ecossistema , Masculino , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Plásticos , Poliestirenos , Ratos , Ratos Wistar , Transdução de Sinais
5.
Ecotoxicol Environ Saf ; 189: 109943, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761553

RESUMO

Epidemiological studies have shown that particulate matters are closely related to human infertility. However, the long-term risk of particulate matters exposure in early life is rarely considered. For the first time this study is designed to explore and elucidate the mechanism of maternal exposure to fine particle matters (PM2.5) on autophagy in spermatogenic cells of adult offspring. Pregnant C57BL/6 mice were randomly divided into four groups. The 4.8 mg/kg.b.w group and the 43.2 mg/kg.b.w group were administered with different doses of PM2.5. The membrane control group was administered with PM2.5 sampling membrane and the control group received no treatment. The exposure was performed every three days from the day after vaginal plug was checked until delivery for a total of 6 times. The results showed that sperms motility and sperms concentration decreased, and sperm deformity increased in adult male offspring. The expression of SOD decreased and MDA increased. Moreover, the level of GRP78/ATF6 and P62 was upregulated, and the expression of PI3K/Akt/mTOR/p-mTOR was down-regulated. This suggests that early-life exposure to PM2.5 can induce autophagy through the PI3K/Akt/mTOR pathway mediated by unfolded protein response in adult testicular tissue. PM2.5 may pose a significant role and long-term threat to adult after early-life exposure.


Assuntos
Autofagia/efeitos dos fármacos , Exposição Materna , Material Particulado/toxicidade , Testículo/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Chaperona BiP do Retículo Endoplasmático , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Transdução de Sinais/efeitos dos fármacos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Testículo/metabolismo
6.
Ecotoxicol Environ Saf ; 180: 280-287, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31100592

RESUMO

Fine particulate matters (PM2.5) have been associated with male reproductive toxicity because it can penetrate into the lung's gas-exchange region, and spread to the whole body via circulatory system. Previous studies have shown that PM2.5 could induce DNA damage and apoptosis by reactive oxygen species (ROS). The aim of the present study is to determine the exact mechanism and role of apoptosis induced by PM2.5 in spermatocyte cells. Male Sprague-Dawley (SD) rats were treated with normal saline (control group) or PM2.5 with the doses of 1.8, 5.4 and 16.2 mg/kg bw. via intratracheal instillation every 3 days for 30 days. Mouse spermatocyte-derived cells (GC-2spd cells) were treated with various concentrations (0, 50, 100, 200 µg/mL) of PM2.5 for 24 h. The results showed that exposure to PM2.5 resulted in injury of testicular tissue and impaired mitochondria integrity in GC-2spd cells. Moreover, PM2.5 induced DNA damage and apoptosis in GC-2spad cells via ROS generation, and the ATM/P53/CDK2 and mitochondria apoptosis pathway autophagy signal pathway were activated. N-Acetyl-L-cysteine (NAC), a well-known antioxidant, ameliorated DNA damage, and inhibited apoptosis. These findings demonstrated PM2.5 might induce apoptosis via the mitochondrial apoptosis pathway through causing DNA damage resulting from oxidative stress, and finally caused spermatogenesis disorder.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA , Mitocôndrias/efeitos dos fármacos , Material Particulado/toxicidade , Transdução de Sinais/efeitos dos fármacos , Espermatócitos/efeitos dos fármacos , Acetilcisteína/metabolismo , Animais , Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Quinase 2 Dependente de Ciclina/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo
7.
Environ Toxicol ; 33(7): 711-719, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29673083

RESUMO

Fine particle matter (PM) is correlated with male reproductive dysfunction in animals and humans, but the underlying mechanisms remain unknown. To investigate the toxic mechanism of PM, 32 male Sprague-Dawley (SD) rats were exposed to saline or PM2.5 with the doses of 1.8, 5.4, and 16.2 mg/kg.b.w. via intratracheal instillation, respectively, one time every 3 days, in total times for 30 days. Sperm concentration, hormone level, the expressions of BTB-associated protein and the mitogen-activated protein kinase (MAPK) pathway, tumor necrosis factor α and transforming growth factor ß3 levels were detected. The results showed a decrease in sperm number, testosterone and luteinizing hormone levels and altered ultrastructure of BTB in testis of rat after exposure to PM2.5 . The protein levels of N-Cadherin, Occludin, Claudin-11, and Connexin-43 were significantly decreased in the testes. TGF-ß3 content in testes showed increase, with the p-p38/p38 MAPK ratio also increasing after PM2.5 exposure. These results demonstrate that PM2.5 restrained the expressions of BTB-associated proteins through activating TGF-ß3/p38 MAPK pathway and decreasing testosterone secretion, and therefore lead to the damage of BTB resulting in the decrease of sperm quality, which might be the potential reasons for its negative effects on spermatogenesis and male reproduction.


Assuntos
Barreira Hematotesticular/efeitos dos fármacos , Material Particulado/toxicidade , Transdução de Sinais/efeitos dos fármacos , Testosterona/metabolismo , Animais , Barreira Hematotesticular/ultraestrutura , Caderinas/metabolismo , Conexina 43/metabolismo , Epididimo/patologia , Humanos , Masculino , Ocludina/metabolismo , Ratos , Ratos Sprague-Dawley , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/ultraestrutura , Fator de Crescimento Transformador beta3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Environ Sci Pollut Res Int ; 30(47): 103823-103835, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37697192

RESUMO

There is a paucity of studies on the multigenerational reproductive toxicity of fine particle matter (PM2.5) exposure during pregnancy on male offspring and the underlying mechanisms. This study explored the effects of PM2.5 exposure during pregnancy on the spermatogenesis of three consecutive generations of male mouse offspring. We randomized pregnant C57BL/6 mice into the control group, the Quartz Fiber Membrane control group, and two experimental groups exposed to different concentrations of PM2.5 (4.8 and 43.2 mg/kg B.Wt.). Pregnant mice from experimental groups received intratracheal instillation of PM2.5 of different doses on a three-day basis until birth. F1 mature male offspring from PM2.5-exposed pregnant mice were mated with normal female C57BL/6 mice. Likewise, their F2 mature male followed the same to produce the F3 generation. The results showed that PM2.5 exposure during pregnancy led to decreased body and tail length, body weight, and survival rates, decreased sperm concentration and sperm motility, and increased sperm abnormality rates significantly in F1 male offspring. We barely observed significant impacts of PM2.5 on the birth number, survival rates, and index of testes in the F2 and F3 offspring. Further exploration showed that PM2.5 exposure during pregnancy caused the morphological abnormality of Sertoli cells, downregulated androgen receptor (AR) and connexin43, upregulated anti-Müllerian hormone (AMH), cytokeratin-18 (CK-18), caspase-3, and cleaved caspase-3, decreased thyroid-stimulating hormone (TSH) and testosterone (T), and increased triiodothyronine (T3) in F1 male mouse offspring. Overall, we hypothesize that PM2.5 exposure during pregnancy mainly negatively impacts spermatogenesis in the F1 offspring. The possible mechanism could be that PM2.5 exposure during pregnancy disrupts endocrine hormone release in the F1 generation, thereby influencing the maturation and proliferation of their Sertoli cells and hindering spermatogenesis. This study for the first time investigates the role of Sertoli cells in the reproductive toxicity of PM2.5 on offspring.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Células de Sertoli , Gravidez , Humanos , Masculino , Camundongos , Animais , Feminino , Caspase 3 , Camundongos Endogâmicos C57BL , Motilidade dos Espermatozoides , Sêmen , Testosterona , Material Particulado/toxicidade
9.
Toxicol Res (Camb) ; 11(1): 226-234, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35237427

RESUMO

Contemporary exposure to PM2.5 has been reported to disrupt spermatogenesis. However, the subsequent toxicological responses and the mechanisms of male reproductive damage in offspring induced by maternal exposure to PM2.5 remain largely unknown. For the first time, this study aimed to explore the apoptotic response in spermatogenesis of male offspring following maternal exposure to PM2.5 and its mechanisms. The C57BL/6 mice with vaginal plugs were randomly divided into four groups. Mice in the PM2.5 groups were intratracheally exposed to PM2.5 (4.8 mg/kg body weight, 43.2 mg/kg body weight) during pregnancy (every 3 days, six times in total). The mice in the membrane control group were treated similarly to the PM2.5 groups, applying only PM2.5 sampling membrane, while mice in the control group were kept untreated. The results showed that maternal exposure to PM2.5 during pregnancy resulted in structural lesions of the testis, reduced numbers of primary spermatocytes and spermatids, decreased sperm count and quality, shortened diameter of seminiferous tubules, and reduced testosterone and ABP in the offspring testes. Furthermore, cell apoptosis was increased and protein expression of IRE-1/P-JNK/cleaved caspase-12/cleaved caspase-3 was activated. These findings suggested that maternal exposure to PM2.5 may affect spermatogenesis by increasing apoptosis through activation of UPR-mediated JNK apoptotic pathway in offspring testicles and by reducing testosterone secretion.

10.
Int J Nanomedicine ; 15: 4407-4415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606685

RESUMO

OBJECTIVE: Silica nanoparticles (SiO2 NPs) have been extensively employed in biomedical field. SiO2 NPs are primarily designed to enter the circulatory system; however, little information is available on potential adverse effects of SiO2 NPs on the nervous system. METHODS: The neurotoxicity of SiO2 NPs at different concentrations (3, 6, 12 ng/nL) on zebrafish embryos was determined using immunofluorescence and microarray techniques, and subsequently confirmed by qRT-PCR. RESULTS: SiO2 NPs disrupt the axonal integrity and decrease the length of axons in Tg (NBT: EGFP) transgenic lines. The number of apoptotic cells in the brain and central nervous system of zebrafish embryos was increased in the presence of 12 ng/nL of SiO2 NPs, but the difference did not reach statistical significance. Screening for changes in the expression of genes involved in the neuroactive ligand-receptor interaction pathway was performed by microarray and confirmed by qRT-PCR. These analyses demonstrated that SiO2 NPs markedly downregulated genes associated with neural function (grm6a, drd1b, chrnb3b, adrb2a, grin2ab, npffr2.1, npy8br, gabrd, chrma3, gabrg3, gria3a, grm1a, adra2b, and glra3). CONCLUSION: The obtained results documented that SiO2 NPs can induce developmental neurotoxicity by affecting the neuroactive ligand-receptor interaction signaling pathway. This new evidence may help to clarify the mechanism of SiO2 NPs-mediated neurotoxicity.


Assuntos
Embrião não Mamífero/metabolismo , Nanopartículas/toxicidade , Neurotoxinas/toxicidade , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Dióxido de Silício/toxicidade , Peixe-Zebra/embriologia , Animais , Apoptose/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Ligantes , Transdução de Sinais/efeitos dos fármacos
11.
Nanotoxicology ; 14(9): 1198-1212, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32880505

RESUMO

Exposure to fine particulate matter (PM2.5) is closely linked with cardiovascular diseases. However, the underlying mechanism of PM2.5 on cardiac function remains unknown. This study was aimed to investigate the role of microRNA-205 (miR-205) on PM2.5-induced myocardial inflammation and cardiac dysfunction. PM2.5 increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), following by decreased cell viability and antioxidant enzymes, resulting in apoptosis of cardiomyocytes (AC16). The histopathological and ultrastructural analysis demonstrated that PM2.5 caused myocardial damage via interstitial edema, inflammatory cell infiltration, and myocardial fiber destruction. PM2.5 enhanced the release of inflammatory factors in AC16 cells and heart tissue. Microarray analysis and dual-luciferase reporter gene assays demonstrated that PM2.5-induced down-regulation of miR-205 regulated interleukin 1 receptor-associated kinase 2 (IRAK2), which further activated the TNF receptor-associated factor 6 (TRAF6)/nuclear transcription factor-κB (NF-κB) signaling pathway in vivo. Moreover, the chemical mimics of miR-205 markedly inhibited the IRAK2/TRAF6/NF-κB signaling pathway, whereas the chemical inhibitors of miR-205 amplified PM2.5-induced activation of the IRAK2 signaling pathway in vitro. In summary, our results found that PM2.5 could trigger myocardial toxicity via miR-205 negative regulating the IRAK2/TRAF6/NF-κB signaling pathway. Our study suggests that miR-205 could be a promising target molecule for mitigating the hazardous effects of PM2.5 on the cardiovascular system.


Assuntos
Poluentes Atmosféricos/toxicidade , Coração/efeitos dos fármacos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MicroRNAs/metabolismo , Miocárdio/metabolismo , Material Particulado/toxicidade , Poluentes Atmosféricos/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinases Associadas a Receptores de Interleucina-1/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Malondialdeído/metabolismo , MicroRNAs/genética , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , NF-kappa B/genética , NF-kappa B/metabolismo , Material Particulado/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Environ Pollut ; 265(Pt A): 115025, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806417

RESUMO

Microplastics (MPs) are new persistent organic pollutants derived from the degradation of plastics. They can accumulate along the food chain and enter the human body through oral administration, inhalation and dermal exposure. To identify the impact of Polystyrene (PS) MPs on the cardiovascular system and the underlying toxicological mechanism, 32 male Wister rats were divided into control group and three model groups, which were exposed to 0.5 µm PS MPs at 0.5, 5 and 50 mg/L for 90 days. Our results suggested that PS MPs exposure increased Troponin I and creatine kinase-MB (CK-MB) levels in serum, resulted in structure damage and apoptosis of myocardium, and led to collagen proliferation of heart. Moreover, PS MPs could induce oxidative stress and thus activate fibrosis-related Wnt/ß-catenin signaling pathway. These results suggested that PS MPs could lead to cardiovascular toxicity by inducing cardiac fibrosis via activating Wnt/ß-catenin pathway and myocardium apoptosis triggered by oxidative stress. The present study provided some novelty evidence to elucidate the potential mechanism of cardiovascular toxicity induced by PS MPs.


Assuntos
Microplásticos , Poliestirenos , Animais , Apoptose , Fibrose , Humanos , Masculino , Miócitos Cardíacos , Plásticos , Ratos , Via de Sinalização Wnt
13.
Sci Total Environ ; 727: 138790, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32344260

RESUMO

Although the associations between endosulfan and adverse cardiovascular health have been reported, the toxic effects and underlying mechanism of endosulfan on the heart are not well understood. In this study, we examined the cardiotoxicity induced by endosulfan using Wistar rats and human cardiomyocytes (AC16) cells. Wistar rats were divided into control group (received corn oil alone) and three concentrations of endosulfan groups (1, 5 and 10 mg/kg·bw) by gavage. The AC16 cells were treated with three various concentrations (0, 1.25, 5, and 20 µg/mL) of endosulfan. The results showed that endosulfan induced cytotoxicity through damaging myocardial structure, decreasing the viability of cardiomyocytes, and elevating the serum levels of cardiac troponin I, heart fatty acid binding protein, aspartate aminotransferase, and reactive oxygen species (p < 0.05). Moreover, measurement of mitochondrial function showed that endosulfan could significantly decrease adenosine triphosphate levels and cytochrome c oxidase IV expression in AC16 cells (p < 0.05). In addition, endosulfan obviously inhibited Bcl-2 expression, activated the expressions of cytochrome c/Caspase-9/Caspase-3 signaling pathway, and induced the apoptosis of AC16 cells (p < 0.05). Furthermore, endosulfan significantly increased the expression of Bim, and inhibited the expressions of PI3K/Akt/FoxO3a signaling pathways in cardiomyocytes (p < 0.05). These results suggest that endosulfan may induce cardiotoxicity by inducing myocardial apoptosis resulting from activation of mitochondria-mediated apoptosis pathway and inhibition of pro-survival signaling pathways, which might be helpful in elucidating the mechanism of cardiac dysfunction induced by endosulfan.


Assuntos
Endossulfano , Fosfatidilinositol 3-Quinases , Animais , Apoptose , Cardiotoxicidade , Humanos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Transdução de Sinais
14.
J Hazard Mater ; 384: 121361, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31606252

RESUMO

To demonstrate the combined adverse effect and the mechanism of silica nanoparticles (SiNPs) with 57.66 ± 7.30 nm average diameter and high-fat diet (HFD) on Wistar rats, 60 male Wistar rats were randomly divided into six groups (n = 10): Control group, SiNPs group, HFD group, 2 mg kg-1 SiNPs + HFD group, 5 mg kg-1 SiNPs + HFD group and 10 mg kg-1 SiNPs + HFD group. HFD was administrated for 2 weeks for the rats in advance and SiNPs were supplied every 3 d for 48 d subsequently. The present study illustrated that both HFD and SiNPs could decrease sperm concentration, mobility rates, increase abnormality rates, damage testicular structure, reduce spermatogonium numbers and spermatoblast numbers, reduce ATP levels, and affect expression of regulatory factors for meiosis in testis. HFD and SiNPs further damaged the sperm and lowered the ATP level and expression of factors associated with meiotic signaling pathway compared with the HFD without SiNPs in testicular tissue of Wistar rats. These results suggested that SiNPs significantly promoted reproductive toxicity induced by HFD in Wistar rats, which provides novel experimental evidence and an explanation for magnified reproductive toxicity triggered by SiNPs in HFD rats.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Meiose/efeitos dos fármacos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Wistar , Dióxido de Silício/química , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Propriedades de Superfície , Testículo/metabolismo , Testículo/ultraestrutura
15.
Toxicol Res (Camb) ; 9(4): 454-460, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32905213

RESUMO

With increasing air pollution, silica nanoparticles (SiNPs), as a main inorganic member of PM2.5, have gained increasing attention to its reproductive toxicity. Most existing studies focused on the acute exposure, while data regarding the chronic effect of SiNPs on reproduction is limited. Therefore, this study was designed to evaluate the chronic toxicity of SiNPs on spermatocyte cells. The cells were continuously exposed to SiNPs for 1, 10, 20 and 30 generations at dose of 5 µg/ml SiNPs for 24 h per generation after attachment. The results showed that with the increasing generations of the exposure, SiNPs decreased the viability of spermatocyte cells, induced apoptosis and increased the level of reactive oxygen species in spermatocyte cells. Moreover, SiNPs increased the protein expression of GRP-78, p-PERK, IRE1α, ATF6 and Cleaved caspase-3 in spermatocyte cells, suggesting that SiNPs improved unfolded protein response (UPR) and apoptosis. The present results indicated that the long-term and low-dose exposure to SiNPs could induce apoptosis by triggering ROS-mediated UPR in spermatocyte cells.

16.
J Geriatr Cardiol ; 17(7): 384-392, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32863820

RESUMO

BACKGROUND: The relationships between dietary intake of soybean products and incident hypertension were still uncertain. This study aimed to illustrate the associations between intake of soybean products with risks of incident hypertension and longitudinal changes of blood pressure in a prospective cohort study. METHODS: We included 67, 499 general Chinese adults from the Project of Prediction for Atherosclerosis Cardiovascular Disease Risk in China (China-PAR). Information about soybean products consumption was collected by standardized questionnaires, and study participants were categorized into the ideal (≥ 125 g/day) or non-ideal (< 125 g/day) group. Hazard ratios (HRs) and corresponding 95% confidence intervals (95% CIs) for incident hypertension were calculated using Cox proportional hazard models. Among participants with repeated measures of blood pressure, generalized linear models were used to examine the relationships between soybean products consumption and blood pressure changes. RESULTS: During a median follow-up of 7.4 years, compared with participants who consumed < 125 g of soybean products per day, multivariable adjusted HR for those in the ideal group was 0.73 (0.67-0.80). This inverse association remained robust across most subgroups while significant interactions were tested between soybean products intake and age, sex, urbanization and geographic region (P values for interaction < 0.05). The mean systolic and diastolic blood pressure levels were 1.05 (0.71-1.39) mmHg and 0.44 (0.22-0.66) mmHg lower among participants in the ideal group than those in the non-ideal group. CONCLUSIONS: Our study showed that intake of soybean products might reduce the long-term blood pressure levels and hypertension incidence among Chinese population, which has important public health implications for primary prevention of hypertension.

17.
Environ Pollut ; 255(Pt 1): 113172, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541822

RESUMO

Researches had shown that silica nanoparticles (SiNPs) could reduce the quantity and quality of sperms. However, chronic effects of SiNPs have not been well addressed. In this study, mice spermatocyte cells (GC-2spd cells) were continuously exposed to SiNPs (5 µg/mL) for 30 passages and then the changes of microRNA (miRNA) profile and mRNA profile were detected. The function of miRNAs was verified by inhibitors to explore the regulation role of miRNAs in reproductive toxicity induced by SiNPs. The results showed that SiNPs induced cytotoxicity, and activated autophagy in GC-2spd cells. SiNPs led to a total of 1604 mRNAs (697 up-regulated and 907 down-regulated) and 15 miRNAs (6 up-regulated such as miRNA-138 and miRNA-494 and 9 down-regulated) with different expression in GC-2spd cells. The combined miRNA profile and mRNA profile showed that 415 mRNAs with different expression in 5 µg/mL SiNPs group were regulated by miRNA. Furthermore, our study demonstrated that SiNPs decreased the expressions of AKT mRNAs. Moreover, SiNPs had an activation effect on the AMPK/TSC/mTOR pathway. However, inhibitor of miRNA-494 could attenuate the expression levels of AMPK, TSC, LC3Ⅱ and alleviate the decreased of AKT, mTOR, p-mTOR induced by SiNPs. The above results suggested that the low-dose SiNPs exposure could promote autophagy by miRNA-494 targeting AKT, thereby activating AMPK/TSC/mTOR pathway in GC-2spd cells. MiRNA-494 is an important regulator of autophagy by targeting AKT, which provides new evidence for the male reproductive toxicity mechanism of SiNPs.


Assuntos
Autofagia/efeitos dos fármacos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dióxido de Silício/toxicidade , Espermatozoides/patologia , Animais , Linhagem Celular , Regulação para Baixo , Masculino , Camundongos , Nanopartículas/toxicidade , Análise do Sêmen , Espermatócitos , Espermatozoides/efeitos dos fármacos , Regulação para Cima
18.
Chemosphere ; 228: 709-720, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071558

RESUMO

Silica nanoparticles (SiNPs) are found in the environmental particulate matter and have been proved to pose an adverse effect on fertility. However, the relationship between miRNA and apoptosis induced by SiNPs in spermatogenesis and its underlying mechanism remains confusing. Therefore, the present study was designed to investigate the toxic effects of SiNPs on spermatogenic cells mediated through miRNAs. Spermatocyte cells were divided into 0 µg/mL and 5 µg/mL SiNPs groups, and the cells were collected and analyzed after passaging for 1, 10, 20, and 30 generations. miRNA profile and mRNA profile of spermatocyte cells were measured after exposure to SiNPs for 30 generations. Further, mimics and inhibitors of miRNA were used to verify the relationship between miRNA and their predicted target genes in the 30th-generation cells. The results showed that the degree of cell apoptosis in the SiNPs group significantly increased in the 30th generation. After exposure to SiNPs for 30 generations, the expression of 15 miRNAs was altered, including 5 upregulated miRNAs and 10 downregulated miRNAs. Of the 15 miRNAs, miR-138 and miR-2861 were related to the death receptor pathway. The miR-2861 mimic could target to regulate the mRNA expression of fas/fasl/ripk1 and increase the protein expression of Fas/FasL/RIPK1/FADD/caspase-8/caspase-3 of spermatogenic cells in the 30th generation, while the miR-138 inhibitor could not. In conclusion, SiNPs could cause apoptosis of spermatocyte cells by inhibiting the expression of miRNA-2861, thereby resulting in the upregulation of mRNA expression of fas/fasl/ripk1 and activating the death receptor pathway of spermatocyte cells. miRNA-2861 could be considered a biomarker of the toxic effect of SiNPs on spermatocyte cells. The main finding: Silica nanoparticles induce apoptosis in spermatocyte cells through microRNA-2861 inhibition, thereby upregulating mRNA expression of fas/fasl/ripk1 and activating the death receptor pathway of spermatocyte cells.


Assuntos
MicroRNAs/genética , Nanopartículas/toxicidade , Receptores de Morte Celular/metabolismo , Dióxido de Silício/toxicidade , Espermatócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Nanopartículas/química , Receptores de Morte Celular/genética , Dióxido de Silício/química , Espermatócitos/metabolismo , Espermatócitos/patologia , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética
19.
Sci Total Environ ; 634: 1435-1444, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710643

RESUMO

Recent years, air pollution has been a serious problem, and PM2.5 is the main air particulate pollutant. Studies have investigated that PM2.5 is a risky factor to the deterioration of semen quality in males. But, the related mechanism is still unclear. To explore the effect of PM2.5, Sprague Dawley (SD) rats were exposed to PM2.5 (0, 1.8, 5.4 and 16.2mg/kg.bw.) through intratracheal instillation. The exposure was performed once every 3days and continued for 30days. In vitro, GC-2spd cells were treated using 0, 50, 100, 200µg/mL PM2.5 for 24h. The data showed that sperm relative motility rates and density were remarkably decreased, while sperm malformation rates were significantly increased with exposure to the PM2.5. The expression of Fas/FasL/RIPK1/FADD/Caspase-8/Caspase-3 and the level of 8-OHdG expression in testes were significantly increased after exposure to PM2.5. Additionally, in vitro the results showed that PM2.5 inhibited cell viability, increased the release of lactate dehydrogenase (LDH) by increasing reactive oxygen species (ROS) level. And ROS induced-DNA damage led to cell cycle arrest at G0/G1 phases and proliferation inhibition. Similar to the vivo study, the expressions of Fas/FasL/RIPK1/FADD/Caspase-8/Caspase-3 in GC-2spd cells were significantly increased after exposure to PM2.5 for 24-h. In addition, PM2.5 decreased the levels of ATP by impairing mitochondria structures, which led to energy metabolism obstruction resulted in the decrease of sperm motility. The above three aspects together resulted in the decrease in sperm quantity and quality.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Espermatozoides/efeitos dos fármacos , Animais , Dano ao DNA , Masculino , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Análise do Sêmen , Transdução de Sinais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA