Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834168

RESUMO

Ophiocordyceps gracilis (O. gracilis) is a parasitic fungus used in traditional Chinese medicine and functional foods. In this study, a neutral heteropolysaccharide (GSP-1a) was isolated from spores of O. gracilis, and its structure and antioxidant capacities were investigated. GSP-1a was found to have a molecular weight of 72.8 kDa and primarily consisted of mannose (42.28%), galactose (35.7%), and glucose (22.02%). The backbone of GSP-1a was composed of various sugar residues, including →6)-α-D-Manp-(1→, →2,6)-α-D-Manp-(1→, →2,4,6)-α-D-Manp-(1→, →6)-α-D-Glcp-(1→, and →3,6)-α-D-Glcp-(1→, with some branches consisting of →6)-α-D-Manp-(1→ and α-D-Gal-(1→. In vitro, antioxidant activity assays demonstrated that GSP-1a exhibited scavenging effects on hydroxyl radical (•OH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS•+), and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•). Moreover, GSP-1a was found to alleviate H2O2-induced oxidative stress in HepG2 cells by reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD). Furthermore, GSP-1a upregulated the mRNA expression of antioxidant enzymes such as Ho-1, Gclm, and Nqo1, and regulated the NRF2/KEAP1 and FNIP1/FEM1B pathways. The findings elucidated the structural types of GSP-1a and provided a reliable theoretical basis for its usage as a natural antioxidant in functional foods or medicine.


Assuntos
Antioxidantes , Hypocreales , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Polissacarídeos/química , Esporos/metabolismo
2.
Microb Cell Fact ; 21(1): 12, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090444

RESUMO

BACKGROUND: Polysaccharides are important active ingredients in Ophiocordyceps gracilis with many physiological functions. It can be obtained from the submerged fermentation by the anamorph (Paraisaria dubia) of Ophiocordyceps gracilis. However, it was found that the mycelial pellets of Paraisaria dubia were dense and increased in volume in the process of fermentation, and the center of the pellets was autolysis due to the lack of nutrient delivery, which extremely reduced the yield of polysaccharides. Therefore, it is necessary to excavate a fermentation strategy based on morphological regulation for Paraisaria dubia to promote polysaccharides accumulation. RESULTS: In this study, we developed a method for enhancing polysaccharides production by Paraisaria dubia using microparticle enhanced technology, talc microparticle as morphological inducer, and investigated the enhancement mechanisms by transcriptomics. The optimal size and dose of talc were found to be 2000 mesh and 15 g/L, which resulted in a high polysaccharides yield. It was found that the efficient synthesis of polysaccharides requires an appropriate mycelial morphology through morphological analysis of mycelial pellets. And, the polysaccharides synthesis was found to mainly rely on the ABC transporter-dependent pathway revealed by transcriptomics. This method was also showed excellent robustness in 5-L bioreactor, the maximum yields of intracellular polysaccharide and exopolysaccharides were 83.23 ± 1.4 and 518.50 ± 4.1 mg/L, respectively. And, the fermented polysaccharides were stable and showed excellent biological activity. CONCLUSIONS: This study provides a feasible strategy for the efficient preparation of cordyceps polysaccharides via submerged fermentation with talc microparticles, which may also be applicable to similar macrofungi.


Assuntos
Polissacarídeos Fúngicos/biossíntese , Hypocreales/metabolismo , Reatores Biológicos , Vias Biossintéticas , Meios de Cultura , Fermentação , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Hypocreales/citologia , Hypocreales/genética , Micélio/citologia , Tamanho da Partícula , Talco
3.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621016

RESUMO

Many studies have shown that multidrug and toxic compound extrusion (MATE) is a new secondary transporter family that plays a key role in secondary metabolite transport, the transport of plant hormones and disease resistance in plants. However, detailed information on this family in Gleditsia sinensis has not yet been reported. In the present study, a total of 45 GsMATE protein members were identified and analysed in detail, including with gene classification, phylogenetic evaluation and conserved motif determination. Phylogenetic analysis showed that GsMATE proteins were divided into six subfamilies. Additionally, in order to understand these members' regulatory roles in growth and development in G. sinensis , the GsMATEs expression profiles in different tissues and different developmental stages of thorn were examined in transcriptome data. The results of this study demonstrated that the expression of all MATE genes varies in roots, stems and leaves. Notably, the expression levels of GsMATE26 , GsMATE32 and GsMATE43 differ most in the early stages of thorn development, peaking at higher levels than in later stages. Our results provide a foundation for further functional characterisation of this important class of transporter family in G. sinensis .


Assuntos
Gleditsia , Gleditsia/genética , Gleditsia/metabolismo , Filogenia , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética
4.
Food Chem X ; 21: 101052, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38187943

RESUMO

Boletus aereus, an edible mushroom, has gained popularity as a medicinal and functional food. This study aimed to investigate the digestive characteristics of B. aereus polysaccharide (BAP) and its effects on gut microbiota. In vitro digestion results indicated partial degradation of BAP. Furthermore, the digested BAP displayed significantly enhanced antioxidant ability. The 16S rRNA sequencing data revealed that BAP positively influenced the abundance of Phascolarctobacterium, Prevotella, and Bifidobacterium in the gut microbiota. Additionally, BAP promoted the production of short-chain fatty acids (SCFAs). Metabolites of BAP utilized by the gut microbiota effectively reduced the concentration of TNF-α, IL-1ß, and NO in an LPS-stimulated RAW 264.7 cell inflammation model. Mantel tests demonstrated a strong correlation among fermentation indicators, gut microbiome composition, SCFAs, and inflammatory cytokines. Overall, this research revealed the underlying digestive and fermentation mechanisms of BAP and provided new insights into the usage of edible mushroom polysaccharides in functional food.

5.
Food Funct ; 15(3): 1223-1236, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38226896

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions that lead to the disruption of the colonic mucus barrier. Quinoa has a well-balanced profile of essential amino acids and exhibits excellent anti-inflammatory effects. We recently explored the beneficial effects and relevant mechanisms of a novel quinoa peptide TPGAFF on impaired mucus barriers in mice with chemically induced colitis. Our findings demonstrated that TPGAFF, administered in low and high doses for 28 days, effectively attenuated the pathological phenotype and reduced intestinal permeability in colitis mice. TPGAFF demonstrated its protective abilities by restoring the impaired mucus barrier, inhibiting the activation of inflammatory signaling and reducing inflammatory cytokine levels. Moreover, TPGAFF positively influenced the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, TPGAFF inhibited the activation of TRPV1 nociceptor and decreased the levels of neuropeptides. Conclusively, our results indicated that oral administration of TPGAFF may be an optional approach for the treatment of mucus barrier damage.


Assuntos
Chenopodium quinoa , Colite , Microbioma Gastrointestinal , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Chenopodium quinoa/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Citocinas/metabolismo , Muco/metabolismo , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo , Canais de Cátion TRPV
6.
Int J Biol Macromol ; 266(Pt 1): 131232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554896

RESUMO

Inflammatory bowel diseases (IBD) are chronic inflammatory conditions characterized by disruptions in the colonic mucus barrier and gut microbiota. In this study, a novel soluble polysaccharide obtained from Boletus aereus (BAP) through water extraction was examined for its structure. The protective effects of BAP on colitis were investigated using a DSS-induced mice model. BAP was found to promote the expression of intestinal mucosal and tight junction proteins, restore the compromised mucus barrier, and suppress the activation of inflammatory signaling. Moreover, BAP reshape the gut microbiota and had a positive impact on the composition of the gut microbiota by reducing inflammation-related microbes. Additionally, BAP decreased cytokine levels through the MANF-BATF2 signaling pathway. Correlation analysis revealed that MANF was negatively correlated with the DAI and the level of cytokines. Furthermore, the depletion of gut microbiota using antibiotic partially inhabited the effect of BAP on the activation of MANF and Muc2, indicating the role of gut microbiota in its protective effect against colitis. In conclusion, BAP had an obvious activation on MANF under gut inflammation. This provides new insights into the prospective use of BAP as a functional food to enhance intestinal health.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Mucina-2 , Transdução de Sinais , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Mucina-2/metabolismo , Mucina-2/genética , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Modelos Animais de Doenças , Polissacarídeos/farmacologia , Polissacarídeos/química , Citocinas/metabolismo , Basidiomycota/química , Masculino , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA