Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biotechnol ; 24(1): 15, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521922

RESUMO

BACKGROUND: Removal of heavy metals from water and soil is a pressing challenge in environmental engineering, and biosorption by microorganisms is considered as one of the most cost-effective methods. In this study, the metal-binding proteins MerR and ChrB derived from Cupriavidus metallidurans were separately expressed in Escherichia coli BL21 to construct adsorption strains. To improve the adsorption performance, surface display and codon optimization were carried out. RESULTS: In this study, we constructed 24 adsorption engineering strains for Hg2+ and Cr6+, utilizing different strategies. Among these engineering strains, the M'-002 and B-008 had the strongest heavy metal ion absorption ability. The M'-002 used the flexible linker and INPN to display the merRopt at the surface of the E. coli BL21, whose maximal adsorption capacity reached 658.40 µmol/g cell dry weight under concentrations of 300 µM Hg2+. And the B-008 overexpressed the chrB in the intracellular, its maximal capacity was 46.84 µmol/g cell dry weight under concentrations 500 µM Cr6+. While in the case of mixed ions solution (including Pb2+, Cd2+, Cr6+ and Hg2+), the total amount of ions adsorbed by M'-002 and B-008 showed an increase of up to 1.14- and 4.09-folds, compared to the capacities in the single ion solution. CONCLUSION: The construction and optimization of heavy metal adsorption strains were carried out in this work. A comparison of the adsorption behavior between single bacteria and mixed bacteria systems was investigated in both a single ion and a mixed ion environment. The Hg2+ absorption capacity is reached the highest reported to date with the engineered strain M'-002, which displayed the merRopt at the surface of chassis cell, indicating the strain's potential for its application in practical environments.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Adsorção , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Íons/metabolismo , Mercúrio/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/metabolismo
2.
J Am Chem Soc ; 145(24): 13099-13113, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37216494

RESUMO

Photosensitizers to precise target and change fluorescence upon light illumination could accurately self-report where and when the photosensitizers work, enabling us to visualize the therapeutic process and precisely regulate treatment outcomes, which is the unremitting pursuit of precision and personalized medicine. Here, we report self-immolative photosensitizers by adopting a strategy of light-manipulated oxidative cleavage of C═C bonds that can generate a burst of reactive oxygen species, to cleave to release self-reported red-emitting products and trigger nonapoptotic cell oncosis. Strong electron-withdrawing groups are found to effectively suppress the C═C bond cleavage and phototoxicity via studying the structure-activity relationship, allowing us to elaborate NG1-NG5 that could temporarily inactivate the photosensitizer and quench the fluorescence by different glutathione (GSH)-responsive groups. Thereinto, NG2 with 2-cyano-4-nitrobenzene-1-sulfonyl group displays excellent GSH responsiveness than the other four. Surprisingly, NG2 shows better reactivity with GSH in weakly acidic condition, which inspires the application in weakly acidic tumor microenvironment where GSH elevates. To this end, we further synthesize NG-cRGD by anchoring integrin αvß3 binding cyclic pentapeptide (cRGD) for tumor targeting. In A549 xenografted tumor mice, NG-cRGD successfully deprotects to restore near-infrared fluorescence because of elevated GSH in tumor site, which is subsequently cleaved upon light irradiation releasing red-emitting products to report photosensitizer working, while effectively ablating tumors via triggered oncosis. The advanced self-immolative organic photosensitizer may accelerate the development of self-reported phototheranostics in future precision oncology.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Autorrelato , Medicina de Precisão , Glutationa/química , Linhagem Celular Tumoral , Nanopartículas/química , Microambiente Tumoral
3.
J Org Chem ; 88(9): 5300-5310, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37039374

RESUMO

The ability to selectively synthesize multiple products from the same sets of substrates is a highly appealing and challenging concept in synthetic chemistry. In this manuscript, we describe the visible-light photoredox intermolecular catalysis of N-arylacrylamides that are α-C-H functionalized with aryl tertiary amines. The photocatalyst acts as a chemical switch to trigger two different reaction pathways and to obtain two different products from the same starting material. Simple adjustments to the reaction conditions enable the divergent synthesis of the oxidative cyclizations or the addition products in good to high yields with excellent atom economy.

4.
Org Biomol Chem ; 21(4): 719-723, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36416357

RESUMO

Photocatalytic reactions, in particular, processes without photosensitisers, have attracted increased attention due to their green aspect and high economic value and are considered valuable tools in organic synthesis. A new practical photocatalytic system was investigated in this study, and it can efficiently produce gem-dihaloenones by combining terminal alkynes with tetrahalomethanes (BrCCl3 and CBr4) and water without a photocatalyst, and the yield can reach up to 87%. The catalytic system is straightforward, the raw materials are inexpensive and easy to obtain, and the operation is simple.

5.
Angew Chem Int Ed Engl ; 62(25): e202303476, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37079447

RESUMO

NIR-II-emitting photosensitizers (PSs) have attracted great research interest due to their promising clinical applications in imaging-guided photodynamic therapy (PDT). However, it is still challenging to realize highly efficient PDT on NIR-II PSs. In this work, we develop a chlorination-mediated π-π organizing strategy to improve the PDT of a PS with conjugation-extended A-D-A architecture. The significant dipole moment of the carbon-chlorine bond and the strong intermolecular interactions of chlorine atoms bring on compact π-π stacking in the chlorine-substituted PS, which facilitates energy/charge transfer and promotes the photochemical reactions of PDT. Consequently, the resultant NIR-II emitting PS exhibits a leading PDT performance with a yield of reactive oxygen species higher than that of previously reported long-wavelength PSs. These findings will enlighten the future design of NIR-II emitting PSs with enhanced PDT efficiency.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Halogenação , Cloro , Espécies Reativas de Oxigênio
6.
Angew Chem Int Ed Engl ; 61(12): e202115812, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35064628

RESUMO

The ultralow concentration of nucleic acids in complex biological samples requires fluorescence probes with high specificity and sensitivity. Herein, a new kind of spherical nucleic acids (SNAs) is developed by using fluorescent π-conjugated polymers (FCPs) as a light-harvesting antenna to enhance the signal transduction of nucleic acid detection. Specifically, amphiphilic DNA-grafted FCPs are synthesized and self-assemble into FCP-SNA structures. Tuning the hydrophobicity of the graft copolymer can adjust the size and light-harvesting capability of the FCP-SNAs. We observe that more efficient signal amplification occurs in larger FCP-SNAs, as more chromophores are involved, and the energy transfer can go beyond the Förster radius. Accordingly, the optimized FCP-SNA shows an antenna effect of up to 37-fold signal amplification and the limit of detection down to 1.7 pM in microRNA detection. Consequently, the FCP-SNA is applied to amplified in situ nucleic acid detecting and imaging at the single-cell level.


Assuntos
Ácidos Nucleicos , DNA/química , Transferência de Energia , Corantes Fluorescentes , Polímeros
7.
Angew Chem Int Ed Engl ; 61(15): e202117433, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35092125

RESUMO

It is generally considered that photoacoustic imaging (PAI) and fluorescence imaging (FLI) cannot be enhanced concurrently, as they are dependent on competitive photophysical processes at the single-molecule level. Herein, we reveal that BDTR9-OC8 and BDTR9-C8, which have identical π-conjugated backbones but are substituted by side chains of different rigidity, show distinct phototheranostic properties in the aggregated state. The NIR-II FLI and PAI brightness of BDTR9-C8 nanoparticles are enhanced by 4.6 and 1.4 times compared with BDTR9-OC8 nanoparticles. Theoretical calculations and GIWAXS analysis revealed that BDTR9-C8 with rigid side chains shows a relative amorphous condensed state, which will benefit the efficient transportation of photo-generated excitons and phonons, subsequently enhancing the FLI and PAI signals. Besides, both nanoparticles exhibit excellent photothermal conversion efficiency due to their strong light-harvesting capability and are considered effective photothermal therapy materials. This work provides an illuminating strategy for material design in the future.


Assuntos
Nanopartículas , Técnicas Fotoacústicas , Nanopartículas/química , Nanotecnologia , Imagem Óptica , Técnicas Fotoacústicas/métodos , Fototerapia , Nanomedicina Teranóstica/métodos
8.
Langmuir ; 37(17): 5290-5298, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891427

RESUMO

In this work, we investigate the crystallization of droplets formed on micropatterned surfaces. By solvent exchange in a microchamber, a ternary solution consisting of a model compound ß-alanine, water, and isopropanol was displaced by a flow of isopropanol. In the process, oiling-out droplets formed and crystallized. Our results showed that the shape and size of the crystals on surfaces with chemical micropatterns could be simply mediated by the flow conditions of solvent exchange. More uniform crystals formed on hydrophilic microdomains compared to hydrophobic microdomains or homogeneous surfaces. Varying flow rates or channel heights led to the formation of thin films with microholes, connected networks of crystals, or small diamond-shaped crystals. Physical microstructures (represented by microlenses) on the surface allowed the easy detachment of crystals from the surface. Beyond oiling-out crystallization, we demonstrated that the crystal formation of another solute dissolved in the droplets could be triggered by solvent exchange. The length of crystal fibers after the solvent-exchange process was shorter at a faster flow rate. This study may provide further understanding to effectively obtain the crystallization of surface droplets through the solvent-exchange approach.

9.
Angew Chem Int Ed Engl ; 60(10): 5377-5385, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226694

RESUMO

All-DNA nanomedicines have emerged as potential anti-tumor drugs. DNA nanotechnology provides all-DNA nanomedicines with unlimited possibilities in controlling the diversification of size, shape, and loads of the therapeutic motifs. As DNA is a biological polymer, it is possible to genetically encode and produce the all-DNA nanomedicines in living bacteria. Herein, DNA-dendrimer-based nanomedicines are designed to adapt to the biological production, which is constructed by the flexible 3-arm building blocks to enable a highly efficient one-pot DNA assembly. For the first time, a DNA nanomedicine, D4-3-As-DzSur, is successfully genetically encoded, biotechnologically produced, and directly self-assembled. The performance of the biologically produced D4-3-As-DzSur in targeted gene regulation has been confirmed by in vitro and in vivo studies. The biological production capability will fulfill the low-cost and large-scale production of all-DNA nanomedicines and promote clinical applications.


Assuntos
Antineoplásicos/uso terapêutico , DNA Catalítico/uso terapêutico , Dendrímeros/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Neoplasias/tratamento farmacológico , Células A549 , Animais , Apoptose/efeitos dos fármacos , DNA Catalítico/genética , DNA Catalítico/farmacocinética , Dendrímeros/farmacocinética , Portadores de Fármacos/farmacocinética , Feminino , Expressão Gênica/efeitos dos fármacos , Terapia Genética , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanomedicina/métodos , Neoplasias/genética , Neoplasias/patologia , Survivina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Anal Chem ; 92(18): 12442-12450, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32819088

RESUMO

A combinative approach for chemical analysis makes it possible to distinguish a mixture of a large number of compounds from other mixtures in a single step. This work demonstrates a combinative analysis approach using surface nanodroplets for integrating nanoextraction and colorimetric reactions for the identification of multicomponent mixtures. The model analytes are acidic compounds dissolved in an oil that are extracted into aqueous droplets on a solid substrate. The proton from acid dissociation reacts with the halochromic chemical compounds inside the droplets, leading to the color change of the droplets. The rate of the colorimetric reaction exhibits certain specificity for the acid type, distinguishing acid mixtures with the same pH value. The underlying principle is that the acid transport rate is associated with the partition coefficient and the dissociation constant of the acid, as well as to the concentration in the oil. As a demonstration, we showed that droplet-based combinative analysis can be applied for anti-counterfeiting of various alcoholic spirits by comparing the decoloration time of organic acid mixtures in the spirits. The readout can be done by a common hand-hold mobile phone.

11.
Angew Chem Int Ed Engl ; 59(24): 9702-9710, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32159271

RESUMO

DNA nanotechnology plays an increasingly important role in the biomedical field; however, its application in the design of organic nanomaterials is underexplored. Herein, we report the use of DNA nanotechnology to transport a NIR-II-emitting nanofluorophore across the blood-brain barrier (BBB), facilitating non-invasive imaging of brain tumors. Specifically, the DNA block copolymer, PS-b-DNA, is synthesized through a solid-phase click reaction. We demonstrate that its self-assembled structure shows exceptional cluster effects, among which BBB-crossing is the most notable. Therefore, PS-b-DNA is utilized as an amphiphilic matrix to fabricate a NIR-II nanofluorephore, which is applied in in vivo bioimaging. Accordingly, the NIR-II fluorescence signal of the DNA-based nanofluorophore localized at a glioblastoma is 3.8-fold higher than the NIR-II fluorescence signal of the PEG-based counterpart. The notably increased imaging resolution will significantly benefit the further diagnosis and therapy of brain tumors.


Assuntos
Barreira Hematoencefálica/metabolismo , Corantes/metabolismo , DNA/química , DNA/metabolismo , Raios Infravermelhos , Transporte Biológico , Linhagem Celular , Humanos , Imagem Molecular
12.
Biosens Bioelectron ; 256: 116283, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608495

RESUMO

Due to the toxicity of mercury and its harmful effects on human health, it is essential to establish a low-cost, highly sensitive and highly specific monitoring method with a wide detection range, ideally with a simple visual readout. In this study, a whole-cell biosensor with adjustable detection limits was developed for the detection of mercury ions in water samples, allowing controllable threshold detection with an expanded detection range. Gene circuits were constructed by combining the toehold switch system with lactose operon, mercury-ion-specific operon, and inducible red fluorescent protein gene. Using MATLAB for design and selection, a total of eleven dual-input single-output sensing logic circuits were obtained based on the basic logic of gene circuit construction. Then, biosensor DTS-3 was selected based on its fluorescence response at different isopropyl ß-D-Thiogalactoside (IPTG) concentrations, exhibiting the controllable detection threshold. At 5-20 µM IPTG, DTS-3 can achieve variable threshold detection in the range of 0.005-0.0075, 0.06-0.08, 1-2, and 4-6 µM mercury ion concentrations, respectively. Specificity experiments demonstrated that DTS-3 exhibits good specificity, not showing fluorescence response changes compared with other metal ions. Furthermore spiked sample experiments demonstrated its good resistance to interference, allowing it to distinguish mercury ion concentrations as low as 7.5 nM by the naked eye and 5 nM using a microplate reader. This study confirms the feasibility and performance of biosensor with controllable detection threshold, providing a new detection method and new ideas for expanding the detection range of biosensors while ensuring rapid and convenient measurements without compromising sensitivity.


Assuntos
Técnicas Biossensoriais , Mercúrio , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Mercúrio/análise , Limite de Detecção , Poluentes Químicos da Água/análise , Desenho de Equipamento , Redes Reguladoras de Genes , Humanos , Escherichia coli/genética , Escherichia coli/isolamento & purificação
13.
Acta Biomater ; 178: 296-306, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417646

RESUMO

Manipulation of the lactate metabolism is an efficient way for cancer treatment given its involvement in cancer development, metastasis, and immune escape. However, most of the inhibitors of lactate transport carriers suffer from poor specificity. Herein, we use the CRISPR/Cas9 system to precisely downregulate the monocarboxylate carrier 1 (MCT1) expression. To avoid the self-repairing during the gene editing process, a dual-Cas9 ribonucleoproteins (duRNPs) system is generated using the biological fermentation method and delivered into cells by the zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, enabling precise removal of a specific DNA fragment from the genome. For efficient cancer therapy, a specific glucose transporter 1 inhibitor (BAY-876) is co-delivered with the duRNPs, forming BAY/duRNPs@ZIF-8 nanoparticle. ZIF-8 nanoparticles can deliver the duRNPs into cells within 1 h, which efficiently downregulates the MCT1 expression, and prohibits lactate influx. Through simultaneous inhibition of the lactate and glucose influx, BAY/duRNPs@ZIF-8 prohibits ATP generation, arrests cell cycle, inhibits cell proliferation, and finally induces cellular apoptosis both in vitro and in vivo. Consequently, we demonstrate that the biologically produced duRNPs delivered into cells by the nonviral ZIF-8 carrier have expanded the CRISPR/Cas gene editing toolbox and elevated the gene editing efficiency, which will promote biological studies and clinical applications. STATEMENT OF SIGNIFICANCE: The CRISPR/Cas9 system, widely used as an efficient gene editing tool, faces a challenge due to cells' ability to self-repair. To address this issue, a strategy involving dual-cutting of the genome DNA has been designed and implemented. This strategy utilizes biologically produced dual-ribonucleoproteins delivered by a metal-organic framework. The effectiveness of this dual-cut CRISPR-Cas9 system has been demonstrated through a therapeutic approach targeting the simultaneous inhibition of lactate and glucose influx in cancer cells. The utilization of the dual-cut gene editing strategy has provided valuable insights into gene editing and expanded the toolbox of the CRISPR/Cas-based gene editing system. It has the potential to enable more efficient and precise manipulation of specific protein expression in the future.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA , Ribonucleoproteínas/genética , Lactatos , Glucose , Neoplasias/genética , Neoplasias/terapia
14.
Int J Biol Macromol ; 264(Pt 1): 130088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354936

RESUMO

Bioactive macromolecule mining is important for the functional chemome analysis of traditional Chinese vinegar. In this study, we isolated and characterized carbohydrate-containing macromolecules from Shanxi aged vinegar (CCMSAV) and evaluated their immunomodulatory activity. The isolation process involved ethanol precipitation, deproteinization, decolorization, and DEAE-650 M column chromatography, resulting in the acquisition of four sub-fractions. All sub-fractions exhibited a molecular weight range of 6.92 to 16.71 kDa and were composed of 10 types of monosaccharides. Comparative analysis of these sub-fractions with two melanoidins exhibited similarities in elemental composition, spectral signature, and pyrolytic characteristics. Immunological assays confirmed the significantly enhanced cell viability, phagocytic activity, and secretion of nitric oxide, tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 cells by all four sub-fractions. Further investigation of the immunomodulatory mechanism revealed that SAV-RP70-X, the most potent purified sub-fraction, enhanced aerobic glycolysis in macrophages and activated Toll-like receptor 2 (TLR2), TLR4, mannose receptor (MR), scavenger receptor (SR), and the dendritic cell-associated C-type lectin-1 receptor (Dectin-1). Furthermore, the activation of macrophages was associated with the MyD88/PI3K/Akt/NF-κB signaling pathway. Methylation analysis revealed that 1,4-Xylp was the most abundant glycosidic linkage in SAV-RP70-X.


Assuntos
Ácido Acético , Fosfatidilinositol 3-Quinases , Polímeros , Animais , Camundongos , Ácido Acético/farmacologia , Ácido Acético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Células RAW 264.7 , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo
15.
Nat Commun ; 15(1): 170, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167652

RESUMO

Practical photodynamic therapy calls for high-performance, less O2-dependent, long-wavelength-light-activated photosensitizers to suit the hypoxic tumor microenvironment. Iridium-based photosensitizers exhibit excellent photocatalytic performance, but the in vivo applications are hindered by conventional O2-dependent Type-II photochemistry and poor absorption. Here we show a general metallopolymerization strategy for engineering iridium complexes exhibiting Type-I photochemistry and enhancing absorption intensity in the blue to near-infrared region. Reactive oxygen species generation of metallopolymer Ir-P1, where the iridium atom is covalently coupled to the polymer backbone, is over 80 times higher than that of its mother polymer without iridium under 680 nm irradiation. This strategy also works effectively when the iridium atom is directly included (Ir-P2) in the polymer backbones, exhibiting wide generality. The metallopolymer nanoparticles exhibiting efficient O2•- generation are conjugated with integrin αvß3 binding cRGD to achieve targeted photodynamic therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/química , Irídio/química , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polímeros/uso terapêutico , Microambiente Tumoral
16.
Adv Sci (Weinh) ; 11(6): e2307569, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155495

RESUMO

Deep NIR organic phototheranostic molecules generally have large π-conjugation structures and show highly hydrophobic properties, thus, forming strong π-π stacking in the aqueous medium, which will affect the phototheranostic performance. Herein, an end-group strategy is developed to lift the performance of NIR-II emitting photosensitizers. Extensive characterizations reveal that the hydrogen-bonding interactions of the hydroxyl end group can induce a more intense π-π electronic coupling than the chlorination-mediated intermolecular forces. The results disclose that π-π stacking will lower fluorescence quantum yield but significantly benefit the photodynamic therapy (PDT) efficiency. Accordingly, an asymmetrically substituted derivative (BTIC-δOH-2Cl) is developed, which shows balanced phototheranostic properties with excellent PDT efficiency (14.6 folds of ICG) and high NIR-II fluorescence yield (2.27%). It proves the validity of the end-group strategy on controlling the π-π interactions and rational tuning the performance of NIR-II organic phototheranostic agents.

17.
Phys Imaging Radiat Oncol ; 25: 100408, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36655215

RESUMO

Background and purpose: With deep-learning, gross tumour volume (GTV) auto-segmentation has substantially been improved, but still substantial manual corrections are needed. With interactive deep-learning (iDL), manual corrections can be used to update a deep-learning tool while delineating, minimising the input to achieve acceptable segmentations. We present an iDL tool for GTV segmentation that took annotated slices as input and simulated its performance on a head and neck cancer (HNC) dataset. Materials and methods: Multimodal image data of 204 HNC patients with clinical tumour and lymph node GTV delineations were used. A baseline convolutional neural network (CNN) was trained (n = 107 training, n = 22 validation) and tested (n = 24). Subsequently, user input was simulated on initial test set by replacing one or more of predicted slices with ground truth delineation, followed by re-training the CNN. The objective was to optimise re-training parameters and simulate slice selection scenarios while limiting annotations to maximally-five slices. The remaining 51 patients were used as an independent test set, where Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff distance (HD95%) were assessed at baseline and after every update. Results: Median segmentation accuracy at baseline was DSC = 0.65, MSD = 4.3 mm, HD95% = 17.5 mm. Updating CNN using three slices equally sampled from the craniocaudal axis of the GTV in the first round, followed by two rounds of annotating one extra slice, gave the best results. The accuracy improved to DSC = 0.82, MSD = 1.6 mm, HD95% = 4.8 mm. Every CNN update took 30 s. Conclusions: The presented iDL tool achieved substantial segmentation improvement with only five annotated slices.

18.
Acta Biomater ; 170: 330-343, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607616

RESUMO

Metal-organic frameworks (MOFs) with periodically arranged porphyrinic linkers avoiding the self-quenching issue of porphyrins in photodynamic therapy (PDT) have been widely applied. However, the porphyrinic MOFs still face challenges of poor stability under physiological conditions and limited photodynamic efficiency by the hypoxia condition of tumors. Herein, we fabricate the MOF@MOF structure with a protective MOF shell to improve the stability and relieve the hypoxia condition of tumors for sensitized PDT. Under protection of the MOF shell, the MOF@MOF structure can keep intact for 96 h under physiological conditions. Consequently, the tumoral accumulation efficiency is two folds of the MOF core. Furthermore, the MOF shell decomposes under acidic environment, and the loaded inhibitor of mitochondria pyruvate carrier (7-amino carboxycoumarins-2, 7ACC2) will be released. 7ACC2 inhibits the mitochondrial pyruvate influx and simultaneously blocks glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. Under a 5-min laser irradiation, the 7ACC2 carrying MOF@MOF nanoplatforms induced doubled cellular apoptosis and reduced 70% of the tumor growth compared with the cargo-free MOF@MOF. In summary, the design of this stable and hypoxia self-relievable MOF@MOF nanoplatform will enlighten the future development of MOF-based nanomedicines and PDT. STATEMENT OF SIGNIFICANCE: Though widely used for photodynamic therapy (PDT) in previous studies, porphyrinic metal-organic frameworks (MOFs) still face challenges in poor stability under physiological conditions and limited photodynamic efficiency due to the hypoxia condition of tumors. In order to solve these problems, (1) we develop the MOF@MOF strategy to improve the physiological stability; (2) an inhibitor of mitochondria pyruvate carrier, 7-amino carboxycoumarins-2 (7ACC2), is loaded to inhibit the mitochondrial pyruvate influx and simultaneously block glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. In comparison with previous studies, our strategy simultaneously improves stability and overcomes the limited PDT efficiency in the hypoxia tumor tissue, which will enlighten the future development of MOF-based nanomedicines and PDT.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/química , Transportadores de Ácidos Monocarboxílicos , Neoplasias/tratamento farmacológico , Hipóxia , Respiração , Mitocôndrias , Lactatos , Glucose , Piruvatos , Linhagem Celular Tumoral , Nanopartículas/química
19.
ACS Appl Mater Interfaces ; 15(9): 11575-11585, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808954

RESUMO

Chemodynamic therapy (CDT) based on the Fe2+-mediated Fenton reaction can amplify intracellular oxidative stress by producing toxic •OH. However, the high-dose need for Fe2+ delivery in tumors and its significant cytotoxicity to normal tissues set a challenge. Therefore, a controllable delivery to activate the Fenton reaction and enhance Fe2+ tumor accumulation has become an approach to solve this conflict. Herein, we report a rare-earth-nanocrystal (RENC)-based Fe2+ delivery system using light-control techniques and DNA nanotechnology to realize programmable Fe2+ delivery. Ferrocenes, the source of Fe2+, are modified on the surface of RENCs through pH-responsive DNAs, which are further shielded by a PEG layer to elongate blood circulation and "turn off" the cytotoxicity of ferrocene. The up-/down-conversion dual-mode emissions of RENCs endow the delivery system with both capabilities of diagnosis and delivery control. The down-conversion NIR-II fluorescence can locate tumors. Consequently, up-conversion UV light spatiotemporally activates the catalytic activity of Fe2+ by shedding off the protective PEG layer. The exposed ferrocene-DNAs not only can "turn on" Fenton catalytic activity but also respond to tumor acidity, driving cross-linking and enhanced Fe2+ enrichment in tumors by 4.5-fold. Accordingly, this novel design concept will be inspiring for developing CDT nanomedicines in the future.


Assuntos
Metais Terras Raras , Nanopartículas , Neoplasias , Humanos , Luminescência , Fluorescência , Metalocenos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Peróxido de Hidrogênio , Microambiente Tumoral
20.
Genes (Basel) ; 14(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38137004

RESUMO

Species within the genus Chenopodium hold significant research interest due to their nutritional richness and salt tolerance. However, the morphological similarities among closely related species and a dearth of genomic resources have impeded their comprehensive study and utilization. In the present research, we conduct the sequencing and assembly of chloroplast (cp) genomes from six Chenopodium and related species, five of which were sequenced for the first time. These genomes ranged in length from 151,850 to 152,215 base pairs, showcased typical quadripartite structures, and encoded 85 protein-coding genes (PCGs), 1 pseudogene, 37 tRNA genes, and 8 rRNA genes. Compared with the previously published sequences of related species, these cp genomes are relatively conservative, but there are also some interspecific differences, such as inversion and IR region contraction. We discerned 929 simple sequence repeats (SSRs) and a series of highly variable regions across 16 related species, predominantly situated in the intergenic spacer (IGS) region and introns. The phylogenetic evaluations revealed that Chenopodium is more closely related to genera such as Atriplex, Beta, Dysphania, and Oxybase than to other members of the Amaranthaceae family. These lineages shared a common ancestor approximately 60.80 million years ago, after which they diverged into distinct genera. Based on InDels and SNPs between species, we designed 12 pairs of primers for species identification, and experiments confirmed that they could completely distinguish 10 related species.


Assuntos
Chenopodium , Genoma de Cloroplastos , Filogenia , Genoma de Cloroplastos/genética , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA