Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 18(9)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28837060

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted great attention in many biomedical fields and are used in preclinical/experimental drug delivery, hyperthermia and medical imaging. In this study, biocompatible magnetite drug carriers, stabilized by a dextran shell, were developed to carry tissue plasminogen activator (tPA) for targeted thrombolysis under an external magnetic field. Different concentrations of active tPA were immobilized on carboxylated nanoparticles through carbodiimide-mediated amide bond formation. Evidence for successful functionalization of SPIONs with carboxyl groups was shown by Fourier transform infrared spectroscopy. Surface properties after tPA immobilization were altered as demonstrated by dynamic light scattering and ζ potential measurements. The enzyme activity of SPION-bound tPA was determined by digestion of fibrin-containing agarose gels and corresponded to about 74% of free tPA activity. Particles were stored for three weeks before a slight decrease in activity was observed. tPA-loaded SPIONs were navigated into thrombus-mimicking gels by external magnets, proving effective drug targeting without losing the protein. Furthermore, all synthesized types of nanoparticles were well tolerated in cell culture experiments with human umbilical vein endothelial cells, indicating their potential utility for future therapeutic applications in thromboembolic diseases.


Assuntos
Compostos Férricos , Fibrinolíticos/administração & dosagem , Fibrinolíticos/síntese química , Nanopartículas de Magnetita , Ativador de Plasminogênio Tecidual/administração & dosagem , Ativador de Plasminogênio Tecidual/síntese química , Dextranos/química , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Células Endoteliais , Compostos Férricos/química , Fibrinólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Mol Sci ; 16(11): 26280-90, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26540051

RESUMO

Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEON(LA-BSA)), or with dextran (SEON(DEX)). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEON(LA-BSA), SEON(DEX) or SEON(LA). Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.


Assuntos
Dextranos/toxicidade , Compostos Férricos/toxicidade , Células da Granulosa/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dextranos/metabolismo , Feminino , Compostos Férricos/metabolismo , Células da Granulosa/metabolismo , Humanos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes de Mutagenicidade
3.
Front Immunol ; 9: 2266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333831

RESUMO

If foreign particles enter the human body, the immune system offers several mechanisms of response. Neutrophils forming the first line of the immune defense either remove pathogens by phagocytosis, inactivate them by degranulation or release of reactive oxygen species or immobilize them by the release of chromatin decorated with the granular proteins from cytoplasm as neutrophil extracellular traps (NETs). Besides viable microbes like fungi, bacteria or viruses, also several sterile inorganic particles including nanoparticles reportedly activate NET formation. The physicochemical nanoparticle characteristics fostering NET formation are still elusive. Here we show that agglomerations of non-stabilized superparamagnetic iron oxide nanoparticles (SPIONs) induce NET formation by isolated human neutrophils, in whole blood experiments under static and dynamic conditions as well as in vivo. Stabilization of nanoparticles with biocompatible layers of either human serum albumin or dextran reduced agglomeration and NET formation by neutrophils. Importantly, this passivation of the SPIONs prevented vascular occlusions in vivo even when magnetically accumulated. We conclude that higher order structures formed during nanoparticle agglomeration primarily trigger NET formation and the formation of SPION-aggregated NET-co-aggregates, whereas colloid-disperse nanoparticles behave inert and are alternatively cleared by phagocytosis.


Assuntos
Materiais Revestidos Biocompatíveis , Armadilhas Extracelulares/imunologia , Nanopartículas de Magnetita/química , Neutrófilos/imunologia , Fagocitose , Doenças Vasculares/prevenção & controle , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Humanos , Masculino , Neutrófilos/patologia , Coelhos , Espécies Reativas de Oxigênio/imunologia , Doenças Vasculares/imunologia , Doenças Vasculares/patologia
4.
Anticancer Res ; 36(6): 3093-101, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27272833

RESUMO

BACKGROUND/AIM: Cancer research is commonly carried out in two-dimensional (2D) cell cultures, which poorly reflect in vivo settings where the growing tumours are exposed to mechanical forces and biochemical gradients. In this study we established a HF-29 colon carcinoma tumor spheroid model to investigate the effect of free mitoxantrone (MTO) and its nanoparticle-bound form (SPION(MTO)) under 3D cell culture conditions. MATERIALS AND METHODS: Tumour spheroids were generated by seeding HT-29 colon carcinoma cells on agarose-coated cell culture wells. Growth of the spheroids was monitored daily by transmission microscopy upon treatment with free MTO, SPION(MTO) or unloaded SPION. RESULTS AND CONCLUSION: Unloaded SPION did not affect the spheroid size compared to untreated controls, while both free MTO and SPION(MTO) inhibited growth of the spheroids in a dose- and time-dependent manner. In comparison to free MTO, the effect of SPION(MTO) on spheroid growth was slightly delayed. Further analyses are necessary to investigate if MTO infiltrates spheroids in its nanoparticle-bound form or whether it is released from SPION before infiltration.


Assuntos
Antineoplásicos/toxicidade , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Mitoxantrona/toxicidade , Células HT29 , Humanos , Células MCF-7 , Esferoides Celulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA