RESUMO
Bacteriophages and bacteria are engaged in a constant arms race, continually evolving new molecular tools to survive one another. To protect their genomic DNA from restriction enzymes, the most common bacterial defence systems, double-stranded DNA phages have evolved complex modifications that affect all four bases. This study focuses on modifications at position 7 of guanines. Eight derivatives of 7-deazaguanines were identified, including four previously unknown ones: 2'-deoxy-7-(methylamino)methyl-7-deazaguanine (mdPreQ1), 2'-deoxy-7-(formylamino)methyl-7-deazaguanine (fdPreQ1), 2'-deoxy-7-deazaguanine (dDG) and 2'-deoxy-7-carboxy-7-deazaguanine (dCDG). These modifications are inserted in DNA by a guanine transglycosylase named DpdA. Three subfamilies of DpdA had been previously characterized: bDpdA, DpdA1, and DpdA2. Two additional subfamilies were identified in this work: DpdA3, which allows for complete replacement of the guanines, and DpdA4, which is specific to archaeal viruses. Transglycosylases have now been identified in all phages and viruses carrying 7-deazaguanine modifications, indicating that the insertion of these modifications is a post-replication event. Three enzymes were predicted to be involved in the biosynthesis of these newly identified DNA modifications: 7-carboxy-7-deazaguanine decarboxylase (DpdL), dPreQ1 formyltransferase (DpdN) and dPreQ1 methyltransferase (DpdM), which was experimentally validated and harbors a unique fold not previously observed for nucleic acid methylases.
Assuntos
Bacteriófagos , Guanina , Bactérias/genética , Bacteriófagos/genética , DNA/genética , Guanina/análogos & derivadosRESUMO
The DNAs of bacterial viruses are known to contain diverse, chemically complex modifications to thymidine that protect them from the endonuclease-based defenses of their cellular hosts, but whose biosynthetic origins are enigmatic. Up to half of thymidines in the Pseudomonas phage M6, the Salmonella phage ViI, and others, contain exotic chemical moieties synthesized through the post-replicative modification of 5-hydroxymethyluridine (5-hmdU). We have determined that these thymidine hypermodifications are derived from free amino acids enzymatically installed on 5-hmdU. These appended amino acids are further sculpted by various enzyme classes such as radical SAM isomerases, PLP-dependent decarboxylases, flavin-dependent lyases and acetyltransferases. The combinatorial permutations of thymidine hypermodification genes found in viral metagenomes from geographically widespread sources suggests an untapped reservoir of chemical diversity in DNA hypermodifications.
Assuntos
Bacteriófagos , Liases , Aminoácidos/metabolismo , Bacteriófagos/genética , DNA/metabolismo , Timidina/metabolismoRESUMO
TET/JBP (ten-eleven translocation/base J binding protein) enzymes are iron(II)- and 2-oxo-glutarate-dependent dioxygenases that are found in all kingdoms of life and oxidize 5-methylpyrimidines on the polynucleotide level. Despite their prevalence, few examples have been biochemically characterized. Among those studied are the metazoan TET enzymes that oxidize 5-methylcytosine in DNA to hydroxy, formyl, and carboxy forms and the euglenozoa JBP dioxygenases that oxidize thymine in the first step of base J biosynthesis. Both enzymes have roles in epigenetic regulation. It has been hypothesized that all TET/JBPs have their ancestral origins in bacteriophages, but only eukaryotic orthologs have been described. Here we demonstrate the 5mC-dioxygenase activity of several phage TETs encoded within viral metagenomes. The clustering of these TETs in a phylogenetic tree correlates with the sequence specificity of their genomically cooccurring cytosine C5-methyltransferases, which install the methyl groups upon which TETs operate. The phage TETs favor Gp5mC dinucleotides over the 5mCpG sites targeted by the eukaryotic TETs and are found within gene clusters specifying complex cytosine modifications that may be important for DNA packaging and evasion of host restriction.
Assuntos
5-Metilcitosina/metabolismo , Bacteriófagos/metabolismo , DNA/metabolismo , Sequência de Aminoácidos , Metilação de DNA , Dioxigenases , Hidroxilação , Metagenômica , Motivos de Nucleotídeos/genética , Oxirredução , FilogeniaRESUMO
Bacteriophages (phages) outnumber bacteria ten-to-one and cause infections at a rate of 1025 per second. The ability of phages to reduce bacterial populations makes them attractive alternative antibacterials for use in combating the rise in antimicrobial resistance. This effort may be hindered due to bacterial defenses such as Bacteriophage Exclusion (BREX) that have arisen from the constant evolutionary battle between bacteria and phages. For phages to be widely accepted as therapeutics in Western medicine, more must be understood about bacteria-phage interactions and the outcomes of bacterial phage defense. Here, we present the annotated genomes of 12 novel bacteriophage species isolated from water sources in Durham, UK, during undergraduate practical classes. The collection includes diverse species from across known phylogenetic groups. Comparative analyses of two novel phages from the collection suggest they may be founding members of a new genus. Using this Durham phage collection, we determined that particular BREX defense systems were likely to confer a varied degree of resistance against an invading phage. We concluded that the number of BREX target motifs encoded in the phage genome was not proportional to the degree of susceptibility. IMPORTANCE Bacteriophages have long been the source of tools for biotechnology that are in everyday use in molecular biology research laboratories worldwide. Phages make attractive new targets for the development of novel antimicrobials. While the number of phage genome depositions has increased in recent years, the expected bacteriophage diversity remains underrepresented. Here we demonstrate how undergraduates can contribute to the identification of novel phages and that a single City in England can provide ample phage diversity and the opportunity to find novel technologies. Moreover, we demonstrate that the interactions and intricacies of the interplay between bacterial phage defense systems such as Bacteriophage Exclusion (BREX) and phages are more complex than originally thought. Further work will be required in the field before the dynamic interactions between phages and bacterial defense systems are fully understood and integrated with novel phage therapies.
Assuntos
Bacteriófagos , Bacteriófagos/fisiologia , Filogenia , Evolução Biológica , Bactérias , InglaterraRESUMO
Certain viruses of bacteria (bacteriophages) enzymatically hypermodify their DNA to protect their genetic material from host restriction endonuclease-mediated cleavage. Historically, it has been known that virion DNAs from the Delftia phage ΦW-14 and the Bacillus phage SP10 contain the hypermodified pyrimidines α-putrescinylthymidine and α-glutamylthymidine, respectively. These bases derive from the modification of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU) in newly replicated phage DNA via a pyrophosphorylated intermediate. Like ΦW-14 and SP10, the Pseudomonas phage M6 and the Salmonella phage ViI encode kinase homologs predicted to phosphorylate 5-hmdU DNA but have uncharacterized nucleotide content [Iyer et al. (2013) Nucleic Acids Res 41:7635-7655]. We report here the discovery and characterization of two bases, 5-(2-aminoethoxy)methyluridine (5-NeOmdU) and 5-(2-aminoethyl)uridine (5-NedU), in the virion DNA of ViI and M6 phages, respectively. Furthermore, we show that recombinant expression of five gene products encoded by phage ViI is sufficient to reconstitute the formation of 5-NeOmdU in vitro. These findings point to an unexplored diversity of DNA modifications and the underlying biochemistry of their formation.
Assuntos
Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , DNA Viral/biossíntese , Timidina/química , Uridina/química , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Genoma ViralRESUMO
Several reports have demonstrated that Campylobacter bacteriophage DNA is refractory to manipulation, suggesting that these phages encode modified DNA. The characterized Campylobacter jejuni phages fall into two phylogenetic groups within the Myoviridae: the genera Firehammervirus and Fletchervirus Analysis of genomic nucleosides from several of these phages by high-pressure liquid chromatography-mass spectrometry confirmed that 100% of the 2'-deoxyguanosine (dG) residues are replaced by modified bases. Fletcherviruses replace dG with 2'-deoxyinosine, while the firehammerviruses replace dG with 2'-deoxy-7-amido-7-deazaguanosine (dADG), noncanonical nucleotides previously described, but a 100% base substitution has never been observed to have been made in a virus. We analyzed the genome sequences of all available phages representing both groups to elucidate the biosynthetic pathway of these noncanonical bases. Putative ADG biosynthetic genes are encoded by the Firehammervirus phages and functionally complement mutants in the Escherichia coli queuosine pathway, of which ADG is an intermediate. To investigate the mechanism of DNA modification, we isolated nucleotide pools and identified dITP after phage infection, suggesting that this modification is made before nucleotides are incorporated into the phage genome. However, we were unable to observe any form of dADG phosphate, implying a novel mechanism of ADG incorporation into an existing DNA strand. Our results imply that Fletchervirus and Firehammervirus phages have evolved distinct mechanisms to express dG-free DNA.IMPORTANCE Bacteriophages are in a constant evolutionary struggle to overcome their microbial hosts' defenses and must adapt in unconventional ways to remain viable as infectious agents. One mode of adaptation is modifying the viral genome to contain noncanonical nucleotides. Genome modification in phages is becoming more commonly reported as analytical techniques improve, but guanosine modifications have been underreported. To date, two genomic guanosine modifications have been observed in phage genomes, and both are low in genomic abundance. The significance of our research is in the identification of two novel DNA modification systems in Campylobacter-infecting phages, which replace all guanosine bases in the genome in a genus-specific manner.
Assuntos
Bacteriófagos/genética , Campylobacter jejuni/virologia , Desoxiguanosina/genética , Inosina/genética , Vias Biossintéticas/genética , DNA Viral/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Genoma Viral , Inosina/análogos & derivados , Inosina/metabolismo , Myoviridae/genética , FilogeniaRESUMO
A tight link exists between patterns of DNA methylation at carbon 5 of cytosine and differential gene expression in mammalian tissues. Indeed, aberrant DNA methylation results in various human diseases, including neurologic and immune disorders, and contributes to the initiation and progression of various cancers. Proper DNA methylation depends on the fidelity and control of the underlying mechanisms that write, maintain, and erase these epigenetic marks. In this Perspective, we address one of the key players in active demethylation: the ten-eleven translocation enzymes or TETs. These enzymes belong to the Fe2+/α-ketoglutarate-dependent dioxygenase superfamily and iteratively oxidize 5-methylcytosine (5mC) in DNA to produce 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. The latter three bases may convey additional layers of epigenetic information in addition to being intermediates in active demethylation. Despite the intense interest in understanding the physiological roles TETs play in active demethylation and cell regulation, less has been done, in comparison, to illuminate details of the chemistry and factors involved in regulating the three-step oxidation mechanism. Herein, we focus on what is known about the biochemical features of TETs and explore questions whose answers will lead to a more detailed understanding of the in vivo modus operandi of these enzymes. We also summarize the membership and evolutionary history of the TET/JBP family and highlight the prokaryotic homologues as a reservoir of potentially diverse functionalities awaiting discovery. Finally, we spotlight sequencing methods that utilize TETs for mapping 5mC and its oxidation products in genomic DNA and comment on possible improvements in these approaches.
Assuntos
5-Metilcitosina/metabolismo , Evolução Biológica , Metilação de DNA , DNA/metabolismo , Dioxigenases/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Sequência de Aminoácidos , Animais , DNA/química , Dioxigenases/química , Dioxigenases/genética , Humanos , Conformação Proteica , Homologia de Sequência , Especificidade por SubstratoRESUMO
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Assuntos
Bactérias/metabolismo , Bacteriófagos/metabolismo , Nucleotídeos/biossíntese , Bactérias/virologia , Bacteriófagos/genética , Metilases de Modificação do DNA/metabolismo , Genes ViraisRESUMO
Oxidation of a DNA thymine to 5-hydroxymethyluracil is one of several recently discovered epigenetic modifications. Here, we report the results of nanopore translocation experiments and molecular dynamics simulations that provide insight into the impact of this modification on the structure and dynamics of DNA. When transported through ultrathin solid-state nanopores, short DNA fragments containing thymine modifications were found to exhibit distinct, reproducible features in their transport characteristics that differentiate them from unmodified molecules. Molecular dynamics simulations suggest that 5-hydroxymethyluracil alters the flexibility and hydrophilicity of the DNA molecules, which may account for the differences observed in our nanopore translocation experiments. The altered physico-chemical properties of DNA produced by the thymine modifications may have implications for recognition and processing of such modifications by regulatory DNA-binding proteins.
Assuntos
DNA/química , Simulação de Dinâmica Molecular , Pentoxil (Uracila)/análogos & derivados , Timina/química , Proteínas de Ligação a DNA/química , Epigênese Genética , Interações Hidrofóbicas e Hidrofílicas , Nanoporos , Desnaturação de Ácido Nucleico , Oxirredução , Pentoxil (Uracila)/química , Ligação Proteica , Propriedades de SuperfícieRESUMO
A half-century after the determination of the first three-dimensional crystal structure of a protein, more than 40,000 structures ranging from single polypeptides to large assemblies have been reported. The challenge for crystallographers, however, remains the growing of a diffracting crystal. Here we report the 4.5-A resolution structure of a 22-MDa macromolecular assembly, the capsid of the infectious epsilon15 (epsilon15) particle, by single-particle electron cryomicroscopy. From this density map we constructed a complete backbone trace of its major capsid protein, gene product 7 (gp7). The structure reveals a similar protein architecture to that of other tailed double-stranded DNA viruses, even in the absence of detectable sequence similarity. However, the connectivity of the secondary structure elements (topology) in gp7 is unique. Protruding densities are observed around the two-fold axes that cannot be accounted for by gp7. A subsequent proteomic analysis of the whole virus identifies these densities as gp10, a 12-kDa protein. Its structure, location and high binding affinity to the capsid indicate that the gp10 dimer functions as a molecular staple between neighbouring capsomeres to ensure the particle's stability. Beyond epsilon15, this method potentially offers a new approach for modelling the backbone conformations of the protein subunits in other macromolecular assemblies at near-native solution states.
Assuntos
Bacteriófagos/química , Bacteriófagos/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Salmonella/virologia , Bacteriófagos/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Vírus de DNA/química , Vírus de DNA/genética , Vírus de DNA/ultraestrutura , Modelos Moleculares , Conformação MolecularRESUMO
The prevalence of multidrug resistant (MDR) bacterial infections continues to rise as the development of antibiotics needed to combat these infections remains stagnant. MDR enterococci are a major contributor to this crisis. A potential therapeutic approach for combating MDR enterococci is bacteriophage (phage) therapy, which uses lytic viruses to infect and kill pathogenic bacteria. While phages that lyse some strains of MDR enterococci have been identified, other strains display high levels of resistance and the mechanisms underlying this resistance are poorly defined. Here, we use a CRISPR interference (CRISPRi) screen to identify a genetic locus found on a mobilizable plasmid from Enterococcus faecalis involved in phage resistance. This locus encodes a putative serine recombinase followed by a Type IV restriction enzyme (TIV-RE) that we show restricts the replication of phage phi47 in vancomycin-resistant E. faecalis. We further find that phi47 evolves to overcome restriction by acquiring a missense mutation in a TIV-RE inhibitor protein. We show that this inhibitor, termed type IV restriction inhibiting factor A (tifA), binds and inactivates diverse TIV-REs. Overall, our findings advance our understanding of phage defense in drug-resistant E. faecalis and provide mechanistic insight into how phages evolve to overcome antiphage defense systems.
Assuntos
Bacteriófagos , Enterococcus faecalis , Proteínas Virais , Enterococcus faecalis/virologia , Enterococcus faecalis/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Enterococos Resistentes à Vancomicina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the ß-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the ß-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
Assuntos
Bacteriófago P22/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Dicroísmo Circular , Escherichia coli/virologia , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Oligonucleotídeos/genética , Prófagos/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Montagem de VírusRESUMO
Engineering efficient, directional electronic communication between living and nonliving systems has the potential to combine the unique characteristics of both materials for advanced biotechnological applications. However, the cell membrane is designed by nature to be an insulator, restricting the flow of charged species; therefore, introducing a biocompatible pathway for transferring electrons across the membrane without disrupting the cell is a significant challenge. Here we describe a genetic strategy to move intracellular electrons to an inorganic extracellular acceptor along a molecularly defined route. To do so, we reconstitute a portion of the extracellular electron transfer chain of Shewanella oneidensis MR-1 into the model microbe Escherichia coli. This engineered E. coli can reduce metal ions and solid metal oxides â¼8× and â¼4× faster than its parental strain. We also find that metal oxide reduction is more efficient when the extracellular electron acceptor has nanoscale dimensions. This work demonstrates that a genetic cassette can create a conduit for electronic communication from living cells to inorganic materials, and it highlights the importance of matching the size scale of the protein donors to inorganic acceptors.
Assuntos
Biotecnologia/métodos , Transporte de Elétrons , Bactérias Gram-Negativas/genética , Metais/química , Membrana Celular , Escherichia coli/genética , Oxirredução , Óxidos/química , Engenharia de Proteínas , Shewanella/genéticaRESUMO
Although restriction-modification systems are found in both Eubacterial and Archaeal kingdoms, comparatively less is known about patterns of DNA methylation and genome defense systems in archaea. Here we report the complete closed genome sequence and methylome analysis of Methanococcus aeolicus PL15/H p , a strain of the CO2-reducing methanogenic archaeon and a commercial source for MaeI, MaeII, and MaeIII restriction endonucleases. The M. aeolicus PL15/H p genome consists of a 1.68 megabase circular chromosome predicted to contain 1,615 protein coding genes and 38 tRNAs. A combination of methylome sequencing, homology-based genome annotation, and recombinant gene expression identified five restriction-modification systems encoded by this organism, including the methyltransferase and site-specific endonuclease of MaeIII. The MaeIII restriction endonuclease was recombinantly expressed, purified and shown to have site-specific DNA cleavage activity in vitro.
RESUMO
The critical viral components for packaging DNA, recognizing and binding to host cells, and injecting the condensed DNA into the host are organized at a single vertex of many icosahedral viruses. These component structures do not share icosahedral symmetry and cannot be resolved using a conventional icosahedral averaging method. Here we report the structure of the entire infectious Salmonella bacteriophage epsilon15 (ref. 1) determined from single-particle cryo-electron microscopy, without icosahedral averaging. This structure displays not only the icosahedral shell of 60 hexamers and 11 pentamers, but also the non-icosahedral components at one pentameric vertex. The densities at this vertex can be identified as the 12-subunit portal complex sandwiched between an internal cylindrical core and an external tail hub connecting to six projecting trimeric tailspikes. The viral genome is packed as coaxial coils in at least three outer layers with approximately 90 terminal nucleotides extending through the protein core and the portal complex and poised for injection. The shell protein from icosahedral reconstruction at higher resolution exhibits a similar fold to that of other double-stranded DNA viruses including herpesvirus, suggesting a common ancestor among these diverse viruses. The image reconstruction approach should be applicable to studying other biological nanomachines with components of mixed symmetries.
Assuntos
Bacteriófagos/genética , Bacteriófagos/metabolismo , DNA Viral/metabolismo , Genoma Viral , Montagem de Vírus , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Molecular , Vírion/química , Vírion/genética , Vírion/crescimento & desenvolvimento , Vírion/ultraestruturaRESUMO
Nucleic acids in living organisms are more complex than the simple combinations of the four canonical nucleotides. Recent advances in biomedical research have led to the discovery of numerous naturally occurring nucleotide modifications and enzymes responsible for the synthesis of such modifications. In turn, these enzymes can be leveraged towards toolkits for DNA and RNA manipulation for epigenetic sequencing or other biotechnological applications. Here, we present the protocol to obtain purified 5-hydroxymethylcytosine carbamoyltransferase enzymes and the associated assays to convert 5-hydroxymethylcytosine to 5-carbamoyloxymethylcytosine in vitro . We include detailed assays using DNA, RNA, and single nucleotide/deoxynucleotide as substrates. These assays can be combined with downstream applications for genetic/epigenetic regulatory mechanism studies and next-generation sequencing purposes.
RESUMO
CRISPR-Cas12a proteins are RNA-guided endonucleases that cleave invading DNA containing target sequences adjacent to protospacer adjacent motifs (PAM). Cas12a orthologs have been repurposed for genome editing in non-native organisms by reprogramming them with guide RNAs to target specific sites in genomic DNA. After single-turnover dsDNA target cleavage, multiple-turnover, non-specific single-stranded DNA cleavage in trans is activated. This property has been utilized to develop in vitro assays to detect the presence of specific DNA target sequences. Most applications of Cas12a use one of three well-studied enzymes. Here, we characterize the in vitro activity of two previously unknown Cas12a orthologs. These enzymes are active at higher temperatures than widely used orthologs and have subtle differences in PAM preference, on-target cleavage, and trans nuclease activity. Together, our results enable refinement of Cas12a-based in vitro assays especially when elevated temperature is desirable.
Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , DNA/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismoRESUMO
Mechanisms to safely eliminate amyloids and preamyloid oligomers associated with many devastating diseases are urgently needed. Biophysical principles dictate that small molecules are unlikely to perturb large intermolecular protein-protein interfaces, let alone extraordinarily stable amyloid interfaces. Yet 4,5-dianilinophthalimide (DAPH-1) reverses Abeta42 amyloidogenesis and neurotoxicity, which is associated with Alzheimer's disease. Here, we show that DAPH-1 and select derivatives are ineffective against several amyloidogenic proteins, including tau, alpha-synuclein, Ure2, and PrP, but antagonize the yeast prion protein, Sup35, in vitro and in vivo. This allowed us to exploit several powerful new tools created for studying the conformational transitions of Sup35 and decipher the mechanisms by which DAPH-1 and related compounds antagonize the prion state. During fibrillization, inhibitory DAPHs alter the folding of Sup35's amyloidogenic core, preventing amyloidogenic oligomerization and specific recognition events that nucleate prion assembly. Select DAPHs also are capable of attacking preformed amyloids. They remodel Sup35 prion-specific intermolecular interfaces to create morphologically altered aggregates with diminished infectivity and self-templating activity. Our studies provide mechanistic insights and reinvigorate hopes for small-molecule therapies that specifically disrupt intermolecular amyloid contacts.
Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Ftalimidas/química , Príons/química , Doença de Alzheimer/metabolismo , Transporte Biológico , Biofísica/métodos , Cisteína/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Biológicos , Fatores de Terminação de Peptídeos , Príons/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Collectively, the dsDNA tailed bacteriophages (Caudovirales) contain the largest chemical diversity of naturally occurring deoxynucleotides in DNA observed to date. The continuing discovery of new modifications in phages suggest many more are waiting to be found. Thus, methods for the observation and characterization of noncanonical nucleosides are timely. We present here protocols for extraction of genomic DNA from bacteriophage particles, enzymatic hydrolysis of DNA to free nucleosides, and examination of nucleoside composition by HPLC and mass spectrometry.
Assuntos
Bacteriófagos/genética , DNA Viral , Epigênese Genética , Epigenômica , Genoma Viral , Cromatografia Líquida de Alta Pressão , Metilação de DNA , Epigenômica/métodos , Hidrólise , Espectrometria de MassasRESUMO
The DNA in bacterial viruses collectively contains a rich, yet relatively underexplored, chemical diversity of nucleobases beyond the canonical adenine, guanine, cytosine, and thymine. Herein, we review what is known about the genetic and biochemical basis for the biosynthesis of complex DNA modifications, also called DNA hypermodifications, in the DNA of tailed bacteriophages infecting Escherichia coli and Salmonella enterica. These modifications, and their diversification, likely arose out of the evolutionary arms race between bacteriophages and their cellular hosts. Despite their apparent diversity in chemical structure, the syntheses of various hypermodified bases share some common themes. Hypermodifications form through virus-directed synthesis of noncanonical deoxyribonucleotide triphosphates, direct modification DNA, or a combination of both. Hypermodification enzymes are often encoded in modular operons reminiscent of biosynthetic gene clusters observed in natural product biosynthesis. The study of phage-hypermodified DNA provides an exciting opportunity to expand what is known about the enzyme-catalyzed chemistry of nucleic acids and will yield new tools for the manipulation and interrogation of DNA.