Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
2.
PLoS Pathog ; 19(6): e1011433, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289828

RESUMO

Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.


Assuntos
Bacteriófagos , Staphylococcaceae , Fagos de Staphylococcus , Bacteriófagos/fisiologia , Especificidade de Hospedeiro , Filogenia , Reação em Cadeia da Polimerase , Staphylococcaceae/classificação , Staphylococcaceae/virologia , Staphylococcus aureus/virologia , Fagos de Staphylococcus/fisiologia , Ensaio de Placa Viral , Replicação Viral
3.
Nucleic Acids Res ; 51(7): 3240-3260, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36840716

RESUMO

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.


Assuntos
Actinobacillus pleuropneumoniae , Variação de Fase , Animais , Suínos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilação de DNA , Metiltransferases/genética , Metiltransferases/metabolismo , Bactérias/genética , DNA/metabolismo
4.
PLoS Genet ; 17(11): e1009864, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748531

RESUMO

Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis. Natural variation within this species allows us to compare tonsil carriage and invasive disease isolates, from both more and less pathogenic populations, with a wide range of genome sizes. We find that invasive disease isolates have repeatedly evolved mutation rates that are higher than those of closely related carriage isolates, regardless of variation in genome size. Independent of this variation in overall rate, we also observe a stronger bias towards G/C to A/T mutations in isolates from more pathogenic populations, whose genomes tend to be smaller and more AT-rich. Our results suggest that ecology is a stronger correlate of mutation rate than genome size over these timescales, and that transitions to invasive disease are consistently accompanied by rapid increases in mutation rate. These results shed light on the impact that ecology can have on the adaptive potential of bacterial pathogens.


Assuntos
Adaptação Biológica/genética , Doenças Transmissíveis Emergentes/microbiologia , Taxa de Mutação , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Zoonoses/microbiologia , Animais , Ecologia , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Virulência/genética
5.
Mol Biol Evol ; 38(4): 1570-1579, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33313861

RESUMO

Emerging bacterial pathogens threaten global health and food security, and so it is important to ask whether these transitions to pathogenicity have any common features. We present a systematic study of the claim that pathogenicity is associated with genome reduction and gene loss. We compare broad-scale patterns across all bacteria, with detailed analyses of Streptococcus suis, an emerging zoonotic pathogen of pigs, which has undergone multiple transitions between disease and carriage forms. We find that pathogenicity is consistently associated with reduced genome size across three scales of divergence (between species within genera, and between and within genetic clusters of S. suis). Although genome reduction is also found in mutualist and commensal bacterial endosymbionts, genome reduction in pathogens cannot be solely attributed to the features of their ecology that they share with these species, that is, host restriction or intracellularity. Moreover, other typical correlates of genome reduction in endosymbionts (reduced metabolic capacity, reduced GC content, and the transient expansion of nonfunctional elements) are not consistently observed in pathogens. Together, our results indicate that genome reduction is a consistent correlate of pathogenicity in bacteria.


Assuntos
Bactérias/patogenicidade , Evolução Biológica , Tamanho do Genoma , Genoma Bacteriano , Animais , Bactérias/genética , Simbiose
6.
BMC Biol ; 19(1): 191, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493269

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease in both pigs and humans. RESULTS: We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural separation into 'resistant' and 'susceptible', highlighting the need to treat MIC as a quantitative trait. We found differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The presence of these determinants explained most of the variation in MIC. But there were also interesting complications, including epistatic interactions, where known resistance alleles had no effect in some genetic backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a characteristic order. CONCLUSIONS: We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis. The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm the potential for genomic data to aid in the fight against AMR.


Assuntos
Streptococcus suis , Animais , Antibacterianos/farmacologia , Anti-Infecciosos , Farmacorresistência Bacteriana/genética , Genômica , Testes de Sensibilidade Microbiana , Preparações Farmacêuticas , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Suínos
7.
Infect Immun ; 88(5)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32094250

RESUMO

Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.


Assuntos
Haemophilus parasuis/genética , Animais , Biofilmes , Infecções por Haemophilus/microbiologia , Macrófagos Alveolares/microbiologia , Fagocitose/fisiologia , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética
8.
BMC Vet Res ; 16(1): 167, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460764

RESUMO

BACKGROUND: Glaesserella parasuis, the causative agent of Glӓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of Glӓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/imunologia , Proteínas Recombinantes/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Infecções por Haemophilus/imunologia , Infecções por Haemophilus/prevenção & controle , Vacinas Anti-Haemophilus/imunologia , Haemophilus parasuis/genética , Sorogrupo , Sus scrofa , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Técnicas de Cultura de Tecidos/veterinária , Vacinação/veterinária , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
9.
Nucleic Acids Res ; 46(21): 11466-11476, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30304532

RESUMO

Streptococcus suis is a major pathogen of swine, responsible for a number of chronic and acute infections, and is also emerging as a major zoonotic pathogen, particularly in South-East Asia. Our study of a diverse population of S. suis shows that this organism contains both Type I and Type III phase-variable methyltransferases. In all previous examples, phase-variation of methyltransferases results in genome wide methylation differences, and results in differential regulation of multiple genes, a system known as the phasevarion (phase-variable regulon). We hypothesized that each variant in the Type I and Type III systems encoded a methyltransferase with a unique specificity, and could therefore control a distinct phasevarion, either by recombination-driven shuffling between different specificities (Type I) or by biphasic on-off switching via simple sequence repeats (Type III). Here, we present the identification of the target specificities for each Type III allelic variant from S. suis using single-molecule, real-time methylome analysis. We demonstrate phase-variation is occurring in both Type I and Type III methyltransferases, and show a distinct association between methyltransferase type and presence, and population clades. In addition, we show that the phase-variable Type I methyltransferase was likely acquired at the origin of a highly virulent zoonotic sub-population.


Assuntos
Regulação Bacteriana da Expressão Gênica , Metiltransferases/genética , Regulon , Streptococcus suis/enzimologia , Alelos , Animais , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , DNA Bacteriano/metabolismo , Epigênese Genética , Escherichia coli , Variação Genética , Genoma Bacteriano , Repetições de Microssatélites , Oligonucleotídeos/genética , Fenótipo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Suínos
10.
J Clin Microbiol ; 57(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30944194

RESUMO

Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.


Assuntos
Portador Sadio/veterinária , Infecções Estreptocócicas/veterinária , Streptococcus suis/isolamento & purificação , Streptococcus suis/patogenicidade , Doenças dos Suínos/microbiologia , Animais , Portador Sadio/microbiologia , Inglaterra , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase Multiplex , Tonsila Palatina/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Suínos , Virulência/genética , País de Gales
11.
J Gen Virol ; 98(11): 2864-2875, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29058655

RESUMO

By providing pollination services, bees are among the most important insects, both in ecological and economical terms. Combined next-generation and classical sequencing approaches were applied to discover and study new insect viruses potentially harmful to bees. A bioinformatics virus discovery pipeline was used on individual Illumina transcriptomes of 13 wild bees from three species from the genus Halictus and 30 ants from six species of the genera Messor and Aphaenogaster. This allowed the discovery and description of three sequences of a new virus termed Halictus scabiosae Adlikon virus (HsAV). Phylogenetic analyses of ORF1, RNA-dependent RNA-polymerase (RdRp) and capsid genes showed that HsAV is closely related to (+)ssRNA viruses of the unassigned Sinaivirus genus but distant enough to belong to a different new genus we called Halictivirus. In addition, our study of ant transcriptomes revealed the first four sinaivirus sequences from ants (Messor barbarus, M. capitatus and M. concolor). Maximum likelihood phylogenetic analyses were performed on a 594 nt fragment of the ORF1/RdRp region from 84 sinaivirus sequences, including 31 new Lake Sinai viruses (LSVs) from honey bees collected in five countries across the globe and the four ant viral sequences. The phylogeny revealed four main clades potentially representing different viral species infecting honey bees. Moreover, the ant viruses belonged to the LSV4 clade, suggesting a possible cross-species transmission between bees and ants. Lastly, wide honey bee screening showed that all four LSV clades have worldwide distributions with no obvious geographical segregation.


Assuntos
Formigas/virologia , Abelhas/virologia , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Filogenia , Animais , Variação Genética , Vírus de Insetos/genética , Análise de Sequência de DNA , Proteínas Virais/genética
12.
J Clin Microbiol ; 55(9): 2617-2628, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615466

RESUMO

Haemophilus parasuis is a diverse bacterial species that is found in the upper respiratory tracts of pigs and can also cause Glässer's disease and pneumonia. A previous pangenome study of H. parasuis identified 48 genes that were associated with clinical disease. Here, we describe the development of a generalized linear model (termed a pathotyping model) to predict the potential virulence of isolates of H. parasuis based on a subset of 10 genes from the pangenome. A multiplex PCR (mPCR) was constructed based on these genes, the results of which were entered into the pathotyping model to yield a prediction of virulence. This new diagnostic mPCR was tested on 143 field isolates of H. parasuis that had previously been whole-genome sequenced and a further 84 isolates from the United Kingdom from cases of H. parasuis-related disease in pigs collected between 2013 and 2014. The combination of the mPCR and the pathotyping model predicted the virulence of an isolate with 78% accuracy for the original isolate collection and 90% for the additional isolate collection, providing an overall accuracy of 83% (81% sensitivity and 93% specificity) compared with that of the "current standard" of detailed clinical metadata. This new pathotyping assay has the potential to aid surveillance and disease control in addition to serotyping data.


Assuntos
Infecções por Haemophilus/diagnóstico , Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Haemophilus parasuis/patogenicidade , Técnicas de Diagnóstico Molecular/métodos , Doenças dos Suínos/diagnóstico , Animais , Genoma/genética , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex , Suínos , Doenças dos Suínos/microbiologia , Virulência/genética
13.
Syst Biol ; 65(2): 265-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26559010

RESUMO

Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives.


Assuntos
Simulação por Computador/normas , Genoma Bacteriano/genética , Filogenia , Rickettsia/classificação , Rickettsia/genética , Evolução Biológica , Classificação
14.
Mol Biol Evol ; 32(4): 1020-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25568346

RESUMO

Varicella-zoster virus (VZV) causes chickenpox and shingles, and is found in human populations worldwide. The lack of temporal signal in the diversity of VZV makes substitution rate estimates unreliable, which is a barrier to understanding the context of its global spread. Here, we estimate rates of evolution by studying live attenuated vaccines, which evolved in 22 vaccinated patients for known periods of time, sometimes, but not always undergoing latency. We show that the attenuated virus evolves rapidly (∼ 10(-6) substitutions/site/day), but that rates decrease dramatically when the virus undergoes latency. These data are best explained by a model in which viral populations evolve for around 13 days before becoming latent, but then undergo no replication during latency. This implies that rates of viral evolution will depend strongly on transmission patterns. Nevertheless, we show that implausibly long latency periods are required to date the most recent common ancestor of extant VZV to an "out-of-Africa" migration with humans, as has been previously suggested.


Assuntos
Vacina contra Varicela/genética , Evolução Molecular , Herpesvirus Humano 3/genética , Latência Viral/genética , Sequência de Bases , Varicela/epidemiologia , Varicela/virologia , Criança , Herpes Zoster/virologia , Herpesvirus Humano 3/fisiologia , Humanos , Dados de Sequência Molecular , Vacinas Atenuadas/genética
15.
Genome Res ; 23(4): 653-64, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23299977

RESUMO

The widespread use of antibiotics in association with high-density clinical care has driven the emergence of drug-resistant bacteria that are adapted to thrive in hospitalized patients. Of particular concern are globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clones that cause outbreaks and epidemics associated with health care. The most rapidly spreading and tenacious health-care-associated clone in Europe currently is EMRSA-15, which was first detected in the UK in the early 1990s and subsequently spread throughout Europe and beyond. Using phylogenomic methods to analyze the genome sequences for 193 S. aureus isolates, we were able to show that the current pandemic population of EMRSA-15 descends from a health-care-associated MRSA epidemic that spread throughout England in the 1980s, which had itself previously emerged from a primarily community-associated methicillin-sensitive population. The emergence of fluoroquinolone resistance in this EMRSA-15 subclone in the English Midlands during the mid-1980s appears to have played a key role in triggering pandemic spread, and occurred shortly after the first clinical trials of this drug. Genome-based coalescence analysis estimated that the population of this subclone over the last 20 yr has grown four times faster than its progenitor. Using comparative genomic analysis we identified the molecular genetic basis of 99.8% of the antimicrobial resistance phenotypes of the isolates, highlighting the potential of pathogen genome sequencing as a diagnostic tool. We document the genetic changes associated with adaptation to the hospital environment and with increasing drug resistance over time, and how MRSA evolution likely has been influenced by country-specific drug use regimens.


Assuntos
Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/epidemiologia , Análise por Conglomerados , Farmacorresistência Bacteriana/genética , Genômica , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/classificação , Pandemias , Filogenia , Filogeografia , Infecções Estafilocócicas/transmissão , Reino Unido/epidemiologia
16.
PLoS Genet ; 9(12): e1003896, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348259

RESUMO

Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups--wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ~21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.


Assuntos
Drosophila melanogaster/genética , Longevidade/genética , Viroses/genética , Wolbachia/genética , Animais , Drosophila melanogaster/microbiologia , Drosophila melanogaster/virologia , Evolução Molecular , Genoma de Inseto , Genômica , Vírus de Insetos/genética , Vírus de Insetos/patogenicidade , Fenótipo , Filogenia , Wolbachia/crescimento & desenvolvimento
17.
Proc Natl Acad Sci U S A ; 110(2): 577-82, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23271803

RESUMO

The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.


Assuntos
Evolução Molecular , Deriva Genética , Variação Genética , Taxa de Mutação , Yersinia pestis/genética , Sequência de Bases , China , Genética Populacional , Funções Verossimilhança , Modelos Genéticos , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
18.
Mol Biol Evol ; 31(10): 2780-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100861

RESUMO

Reliable estimates of the rate at which DNA accumulates mutations (the substitution rate) are crucial for our understanding of the evolution and past demography of virtually any species. In humans, there are considerable uncertainties around these rates, with substantial variation among recent published estimates. Substitution rates have traditionally been estimated by associating dated events to the root (e.g., the divergence between humans and chimpanzees) or to internal nodes in a phylogenetic tree (e.g., first entry into the Americas). The recent availability of ancient mitochondrial DNA sequences allows for a more direct calibration by assigning the age of the sequenced samples to the tips within the human phylogenetic tree. But studies also vary greatly in the methodology employed and in the sequence panels analyzed, making it difficult to tease apart the causes for the differences between previous estimates. To clarify this issue, we compiled a comprehensive data set of 350 ancient and modern human complete mitochondrial DNA genomes, among which 146 were generated for the purpose of this study and estimated substitution rates using calibrations based both on dated nodes and tips. Our results demonstrate that, for the same data set, estimates based on individual dated tips are far more consistent with each other than those based on nodes and should thus be considered as more reliable.


Assuntos
Substituição de Aminoácidos , Biologia Computacional/métodos , Genoma Mitocondrial , Animais , Teorema de Bayes , Calibragem , Evolução Molecular , Genoma Humano , Humanos , Taxa de Mutação , Filogenia
19.
J Clin Microbiol ; 53(12): 3812-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424843

RESUMO

Haemophilus parasuis causes Glässer's disease and pneumonia in pigs. Indirect hemagglutination (IHA) is typically used to serotype this bacterium, distinguishing 15 serovars with some nontypeable isolates. The capsule loci of the 15 reference strains have been annotated, and significant genetic variation was identified between serovars, with the exception of serovars 5 and 12. A capsule locus and in silico serovar were identified for all but two nontypeable isolates in our collection of >200 isolates. Here, we describe the development of a multiplex PCR, based on variation within the capsule loci of the 15 serovars of H. parasuis, for rapid molecular serotyping. The multiplex PCR (mPCR) distinguished between all previously described serovars except 5 and 12, which were detected by the same pair of primers. The detection limit of the mPCR was 4.29 × 10(5) ng/µl bacterial genomic DNA, and high specificity was indicated by the absence of reactivity against closely related commensal Pasteurellaceae and other bacterial pathogens of pigs. A subset of 150 isolates from a previously sequenced H. parasuis collection was used to validate the mPCR with 100% accuracy compared to the in silico results. In addition, the two in silico-nontypeable isolates were typeable using the mPCR. A further 84 isolates were analyzed by mPCR and compared to the IHA serotyping results with 90% concordance (excluding those that were nontypeable by IHA). The mPCR was faster, more sensitive, and more specific than IHA, enabling the differentiation of 14 of the 15 serovars of H. parasuis.


Assuntos
Técnicas de Genotipagem/métodos , Haemophilus parasuis/classificação , Haemophilus parasuis/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Sorotipagem/métodos , Animais , Cápsulas Bacterianas/genética , Loci Gênicos , Infecções por Haemophilus/diagnóstico , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/veterinária , Haemophilus parasuis/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia , Fatores de Tempo
20.
Proc Biol Sci ; 282(1807): 20150249, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904667

RESUMO

Intracellular endosymbiotic bacteria are found in many terrestrial arthropods and have a profound influence on host biology. A basic question about these symbionts is why they infect the hosts that they do, but estimating symbiont incidence (the proportion of potential host species that are actually infected) is complicated by dynamic or low prevalence infections. We develop a maximum-likelihood approach to estimating incidence, and testing hypotheses about its variation. We apply our method to a database of screens for bacterial symbionts, containing more than 3600 distinct arthropod species and more than 150 000 individual arthropods. After accounting for sampling bias, we estimate that 52% (CIs: 48-57) of arthropod species are infected with Wolbachia, 24% (CIs: 20-42) with Rickettsia and 13% (CIs: 13-55) with Cardinium. We then show that these differences stem from the significantly reduced incidence of Rickettsia and Cardinium in most hexapod orders, which might be explained by evolutionary differences in the arthropod immune response. Finally, we test the prediction that symbiont incidence should be higher in speciose host clades. But while some groups do show a trend for more infection in species-rich families, the correlations are generally weak and inconsistent. These results argue against a major role for parasitic symbionts in driving arthropod diversification.


Assuntos
Artrópodes/microbiologia , Bacteroidetes/fisiologia , Rickettsia/fisiologia , Wolbachia/fisiologia , Animais , Incidência , Funções Verossimilhança , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA