Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7966): 761-766, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286605

RESUMO

Hydrologic loads can stimulate seismicity in the Earth's crust1. However, evidence for the triggering of large earthquakes remains elusive. The southern San Andreas Fault (SSAF) in Southern California lies next to the Salton Sea2, a remnant of ancient Lake Cahuilla that periodically filled and desiccated over the past millennium3-5. Here we use new geologic and palaeoseismic data to demonstrate that the past six major earthquakes on the SSAF probably occurred during highstands of Lake Cahuilla5,6. To investigate possible causal relationships, we computed time-dependent Coulomb stress changes7,8 due to variations in the lake level. Using a fully coupled model of a poroelastic crust9-11 overlying a viscoelastic mantle12,13, we find that hydrologic loads increased Coulomb stress on the SSAF by several hundred kilopascals and fault-stressing rates by more than a factor of 2, which is probably sufficient for earthquake triggering7,8. The destabilizing effects of lake inundation are enhanced by a nonvertical fault dip14-17, the presence of a fault damage zone18,19 and lateral pore-pressure diffusion20,21. Our model may be applicable to other regions in which hydrologic loading, either natural8,22 or anthropogenic1,23, was associated with substantial seismicity.

2.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732471

RESUMO

Given the rapid growth of the Cannabis industry, developing practices for producing young plants with limited genetic variation and efficient growth is crucial to achieving reliable and successful cultivation results. This study presents a multi-faceted experiment series analyzing propagation techniques for evaluating proficiency in the growth and development of Cannabis vegetative cuttings. This research encompasses various (1) soilless propagation methods including aeroponics, horticultural (phenolic) foam, and rockwool; (2) transplant timings; (3) aeroponic spray intervals; and (4) aeroponic reservoir nutrient concentrations, to elucidate their impact on rooting and growth parameters amongst two Cannabis cultivars. Aeroponics was as effective as, and in some cases more effective than, soilless propagation media for root development and plant growth. In aeroponic systems, continuous spray intervals, compared to intermittent, result in a better promotion of root initiation and plant growth. Moreover, raised nutrient concentrations in aeroponic propagation demonstrated greater rooting and growth. The effects of experimental treatment were dependent on the cultivar and sampling day. These findings offer valuable insights into how various propagation techniques and growth parameters can be tailored to enhance the production of vegetative cuttings. These results hold critical implications for cultivators intending to achieve premium harvests through efficient propagule methods and optimization strategies in the competitive Cannabis industry. Ultimately, our findings suggest that aeroponic propagation, compared to alternative soilless methods, is a rapid and efficient process for cultivating vegetative cuttings of Cannabis and offers sustainable advantages in resource conservation and preservation.

3.
Nat Commun ; 9(1): 3946, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258058

RESUMO

Reinjection of saltwater, co-produced with oil, triggered thousands of widely felt and several damaging earthquakes in Oklahoma and Kansas. The future seismic hazard remains uncertain. Here, we present a new methodology to forecast the probability of damaging induced earthquakes in space and time. In our hybrid physical-statistical model, seismicity is driven by the rate of injection-induced pressure increases at any given location and spatial variations in the number and stress state of preexisting basement faults affected by the pressure increase. If current injection practices continue, earthquake hazards are expected to decrease slowly. Approximately 190, 130 and 100 widely felt M ≥ 3 earthquakes are anticipated in 2018, 2019 and 2020, respectively, with corresponding probabilities of potentially damaging M ≥ 5 earthquakes of 32, 24 and 19%. We identify areas where produced-water injection is more likely to cause seismicity. Our methodology can be used to evaluate future injection scenarios intended to mitigate seismic hazards.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA