Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 291(10): 5022-37, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26721880

RESUMO

Ligands of the tumor necrosis factor superfamily (TNFSF) interact with members of the TNF receptor superfamily (TNFRSF). TNFSF ligand-TNFRSF receptor interactions have been intensively evaluated by many groups. The affinities of TNFSF ligand-TNFRSF receptor interactions are highly dependent on the oligomerization state of the receptor, and cellular factors (e.g. actin cytoskeleton and lipid rafts) influence the assembly of ligand-receptor complexes, too. Binding studies on TNFSF ligand-TNFRSF receptor interactions were typically performed using cell-free assays with recombinant fusion proteins that contain varying numbers of TNFRSF ectodomains. It is therefore not surprising that affinities determined for an individual TNFSF ligand-TNFRSF interaction differ sometimes by several orders of magnitude and often do not reflect the ligand activity observed in cellular assays. To overcome the intrinsic limitations of cell-free binding studies and usage of recombinant receptor domains, we performed comprehensive binding studies with Gaussia princeps luciferase TNFSF ligand fusion proteins for cell-bound TNFRSF members on intact cells at 37 °C. The affinities of the TNFSF ligand G. princeps luciferase-fusion proteins ranged between 0.01 and 19 nm and offer the currently most comprehensive and best suited panel of affinities for in silico studies of ligand-receptor systems of the TNF family.


Assuntos
Receptores do Fator de Necrose Tumoral/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Células HEK293 , Humanos , Luciferases/genética , Ligação Proteica , Receptores do Fator de Necrose Tumoral/genética , Proteínas Recombinantes
2.
Cancer Immunol Immunother ; 66(3): 319-332, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27896368

RESUMO

Due to its immunogenicity and overexpression concomitant with leukemia progression, Wilms tumor protein 1 (WT1) is of particular interest for immunotherapy of AML relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). So far, WT1-specific T-cell responses have mainly been induced by vaccination with peptides presented by certain HLA alleles. However, this approach is still not widely applicable in clinical practice due to common limitations of HLA restriction. Dendritic cell (DC) vaccines electroporated with mRNA encoding full-length protein have also been tested for generating WT1-derived peptides for presentation to T-cells. Alternatively, an efficient and broad WT1 peptide presentation could be elicited by triggering receptor-mediated protein endocytosis of DCs. Therefore, we developed antibody fusion proteins consisting of an antibody specific for the DEC205 endocytic receptor on human DCs and various fragments of WT1 as DC-targeting recombinant WT1 vaccines (anti-hDEC205-WT1). Of all anti-hDEC205-WT1 fusion proteins designed for overcoming insufficient expression, anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were identified in good yields. The anti-hDEC205-WT191-138 was capable of directly inducing ex vivo T-cell responses by co-incubation of the fusion protein-loaded monocyte-derived mature DCs and autologous T-cells of either healthy or HSCT individuals. Furthermore, the DC-targeted WT191-138-induced specific T-cells showed a strong cytotoxic activity by lysing WT1-overexpressing THP-1 leukemia cells in vitro while sparing WT1-negative hematopoietic cells. In conclusion, our approach identifies four WT1 peptide-antibody fusion proteins with sufficient production and introduces an alternative vaccine that could be easily translated into clinical practice to improve WT1-directed antileukemia immune responses after allo-HSCT.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Linfócitos T Citotóxicos/imunologia , Proteínas WT1/imunologia , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Células CHO , Vacinas Anticâncer/genética , Cricetulus , Eletroporação , Células HEK293 , Humanos , Ativação Linfocitária , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Proteínas WT1/genética
4.
J Immunol ; 191(5): 2308-18, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918987

RESUMO

We found recently that TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible-14 (Fn14) by virtue of their strong capability to reduce the freely available cytoplasmic pool of TNFR-associated factor (TRAF)2 and cellular inhibitors of apoptosis (cIAPs) antagonize the functions of these molecules in TNFR1 signaling, resulting in sensitization for apoptosis and inhibition of classical NF-κB signaling. In this study, we demonstrate that priming of cells with TWEAK also interferes with activation of the classical NF-κB pathway by CD40. Likewise, there was strong inhibition of CD40 ligand (CD40L)-induced activation of MAPKs in TWEAK-primed cells. FACS analysis and CD40L binding studies revealed unchanged CD40 expression and normal CD40L-CD40 interaction in TWEAK-primed cells. CD40L immunoprecipitates, however, showed severely reduced amounts of CD40 and CD40-associated proteins, indicating impaired formation or reduced stability of CD40L-CD40 signaling complexes. The previously described inhibitory effect of TWEAK on TNFR1 signaling has been traced back to reduced activity of the TNFR1-associated TRAF2-cIAP1/2 ubiquitinase complex and did not affect the stability of the immunoprecipitable TNFR1 receptor complex. Thus, the inhibitory effect of TWEAK on CD40 signaling must be based at least partly on other mechanisms. In line with this, signaling by the CD40-related TRAF2-interacting receptor TNFR2 was also attenuated but still immunoprecipitable in TWEAK-primed cells. Collectively, we show that Fn14 activation by soluble TWEAK impairs CD40L-CD40 signaling complex formation and inhibits CD40 signaling and thus identify the Fn14-TWEAK system as a potential novel regulator of CD40-related cellular functions.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Western Blotting , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Linhagem Celular , Citocina TWEAK , Citometria de Fluxo , Humanos , Imunoprecipitação , Microscopia Confocal , Receptores do Fator de Necrose Tumoral/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Receptor de TWEAK , Fatores de Necrose Tumoral/imunologia
5.
J Biol Chem ; 288(19): 13455-66, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23532848

RESUMO

BACKGROUND: Fn14 is a therapeutic target in various diseases. RESULTS: Anti-Fn14 antibodies activate the alternative NFκB pathway but not other Fn14-related activities induced by soluble or membrane-bound TWEAK. FcγR-bound anti-Fn14 antibodies, however, activate the full spectrum of Fn14-associated activities. CONCLUSION: Anti-Fn14 antibodies elicit agonistic activities differing from those of the natural Fn14 ligand TWEAK. SIGNIFICANCE: These findings influence the rationale of designing Fn14-targeted therapies. The Fn14-specific monoclonal antibodies PDL192 and P4A8, which are under consideration in clinical trials, showed no agonistic activity with respect to IL8 production and cell death induction. However, oligomerization with protein G or binding to Fcγ receptors converted both anti-Fn14 antibodies into potent agonists. TNF-like weak inducer of apoptosis (TWEAK), the ligand of Fn14, occurs naturally in two forms with partly different signaling capabilities, as a membrane-bound ligand and as a soluble trimeric molecule. Although membrane TWEAK strongly triggers all Fn14-associated pathways, soluble TWEAK predominately triggers the alternative nuclear factor κB (NFκB) pathway and enhances TNF-induced cell death but has only a poor effect on the classical NFκB pathway and chemokine production. Thus, the oligomerized and FcγR-bound anti-Fn14 mAbs mimicked the activity of membrane TWEAK. Notably, both anti-Fn14 antibodies significantly triggered p100 processing, the hallmark of the alternative NFκB pathway, and therefore resembled soluble TWEAK. In contrast to the latter, however, the anti-Fn14s showed no effect on TNF receptor 1-induced cell death and P4A8 even blocked the corresponding TWEAK response. Thus, we showed that Fn14 antibodies display an alternative NFκB pathway-specific agonistic activity but fail to phenocopy other activities of soluble TWEAK, whereas oligomerized or FcγR-bound Fn14 antibodies fully mimic the activity of membrane TWEAK. In view of the trivalent nature of the TWEAK-Fn14 interaction, this suggests that the alternative NFκB pathway is uniquely responsive already to Fn14 dimerization enabling antibodies to elicit an unnatural response pattern distinct from that of the naturally occurring Fn14 ligands.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Citocina TWEAK , Endonucleases , Células HEK293 , Humanos , Interleucina-8/biossíntese , Macaca fascicularis , Camundongos , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/fisiologia , Fatores de Necrose Tumoral/fisiologia
6.
Theranostics ; 14(2): 496-509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169605

RESUMO

Background: Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8+ T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. Methods: To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter. Results: We identified the domain architecture of the constructs as the pivotal factor enabling FcγR-independent, thus intrinsic TNFR2-agonism. Anti-TNFR2 antibody formats with either TNFR2 binding sites on opposing sites of the antibody scaffold or six or more TNFR2 binding sites in similar orientation regularly showed strong FcγR-independent agonism. The affinity of the TNFR2 binding domain and the epitope recognized in TNFR2, however, were found to be of only secondary importance for agonistic activity. Conclusion: Generic design principles enable the generation of highly active bona fide TNFR2 agonists from nearly any TNFR2-specific antibody.


Assuntos
Receptores de IgG , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores de IgG/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , Anticorpos/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biol Chem ; 287(1): 484-495, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22081603

RESUMO

To perform highly sensitive cellular binding studies with TNF-like weak inducer of apoptosis (TWEAK), we developed a bioluminescent variant of soluble TWEAK (GpL-FLAG-TNC-TWEAK) by fusing it genetically to the C terminus of the luciferase of Gaussia princeps (GpL). Equilibrium binding studies on human (HT1080 and HT29) and murine (Renca and B16) cell lines at 37 °C revealed high affinities of human TWEAK from 53 to 112 pm. The dissociation rate constant of the TWEAK-Fn14 interaction was between 0.48×10(-3) s(-1) (HT29) and 0.58×10(-3) s(-1) (HT1080) for the human molecules, and the association rate constant obtained was 3.3×10(6) m(-1) s(-1) for both cell lines. It has been shown previously that oligomerization of soluble TWEAK trimers results in enhanced Fn14-mediated activation of the classical NFκB pathway. Binding studies with GpL-FLAG-TNC-TWEAK trimers oligomerized by help of a FLAG tag-specific antibody gave no evidence for a major increase in Fn14 occupancy by oligomerized ligand despite strongly enhanced induction of the NFκB target IL8. Thus, aggregated complexes of soluble TWEAK and Fn14 have a higher intrinsic activity to stimulate the classical NFκB pathway and qualitatively differ from isolated trimeric TWEAK-Fn14 complexes. Furthermore, determination of IL8 induction as a function of occupied activated receptors revealed that the intrinsic capability of TNFR1 to stimulate the classical NFκB pathway and IL8 production was ∼100-fold higher than Fn14. Thus, although ∼25 activated TNFR1 trimers were sufficient to trigger half-maximal IL8 production, more than 2500 cell-bound oligomerized TWEAK trimers were required to elicit a similar response.


Assuntos
Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linhagem Celular , Citocina TWEAK , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/patologia , Luciferases/genética , Camundongos , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de Superfície Celular/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Solubilidade , Receptor de TWEAK , Fatores de Necrose Tumoral/química
8.
MAbs ; 12(1): 1807721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32840410

RESUMO

Antibodies that target a clinically relevant group of receptors within the tumor necrosis factor receptor superfamily (TNFRSF), including CD40 and CD95 (Fas/Apo-1), also require binding to Fc gamma receptors (FcγRs) to elicit a strong agonistic activity. This FcγR dependency largely relies on the mere cellular anchoring through the antibody's Fc domain and does not involve the engagement of FcγR signaling. The aim of this study was to elicit agonistic activity from αCD40 and αCD95 antibodies in a myeloma cell anchoring-controlled FcγR-independent manner. For this purpose, various antibody variants (IgG1, IgG1N297A, Fab2) against the TNFRSF members CD40 and CD95 were genetically fused to a single-chain-encoded B-cell activating factor (scBaff) trimer as a C-terminal myeloma-specific anchoring domain substituting for Fc domain-mediated FcγR binding. The antibody-scBaff fusion proteins were evaluated in binding studies and functional assays using tumor cell lines expressing one or more of the three receptors of Baff: BaffR, transmembrane activator and CAML interactor (TACI) and B-cell maturation antigen (BCMA). Cellular binding studies showed that the binding properties of the different domains within the fusion proteins remained fully intact in the antibody-scBaff fusion proteins. In co-culture assays of CD40- and CD95-responsive cells with BaffR, BCMA or TACI expressing anchoring cells, the antibody fusion proteins displayed strong agonism while only minor receptor stimulation was observed in co-cultures with cells without expression of Baff-interacting receptors. Thus, our CD40 and CD95 antibody fusion proteins display myeloma cell-dependent activity and promise reduced systemic side effects compared to conventional CD40 and CD95 agonists.


Assuntos
Anticorpos Monoclonais/imunologia , Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/agonistas , Antígeno de Maturação de Linfócitos B/agonistas , Antígenos CD40/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/agonistas , Receptor fas/imunologia , Anticorpos Monoclonais/genética , Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/genética , Receptor do Fator Ativador de Células B/imunologia , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/imunologia , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Células Jurkat , Proteínas Recombinantes de Fusão/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia
9.
Cell Death Dis ; 10(3): 224, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833543

RESUMO

Antibodies specific for TNFRSF receptors that bind soluble ligands without getting properly activated generally act as strong agonists upon FcγR binding. Systematic analyses revealed that the FcγR dependency of such antibodies to act as potent agonists is largely independent from isotype, FcγR type, and of the epitope recognized. This suggests that the sole cellular attachment, achieved by Fc domain-FcγR interaction, dominantly determines the agonistic activity of antibodies recognizing TNFRSF receptors poorly responsive to soluble ligands. In accordance with this hypothesis, we demonstrated that antibody fusion proteins harboring domains allowing FcγR-independent cell surface anchoring also act as strong agonist provided they have access to their target. This finding defines a general possibility to generate anti-TNFRSF receptor antibodies with FcγR-independent agonism. Moreover, anti-TNFRSF receptor antibody fusion proteins with an anchoring domain promise superior applicability to conventional systemically active agonists when an anchoring target with localized disease associated expression can be addressed.


Assuntos
Receptores de IgG/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Animais , Reações Antígeno-Anticorpo , Epitopos/imunologia , Células HEK293 , Células HT29 , Células HeLa , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Células Jurkat , Camundongos , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA