Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genet Med ; 23(3): 443-450, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33190143

RESUMO

PURPOSE: The percentage of a maternal cell-free DNA (cfDNA) sample that is fetal-derived (the fetal fraction; FF) is a key driver of the sensitivity and specificity of noninvasive prenatal screening (NIPS). On certain NIPS platforms, >20% of women with high body mass index (and >5% overall) receive a test failure due to low FF (<4%). METHODS: A scalable fetal fraction amplification (FFA) technology was analytically validated on 1264 samples undergoing whole-genome sequencing (WGS)-based NIPS. All samples were tested with and without FFA. RESULTS: Zero samples had FF < 4% when screened with FFA, whereas 1 in 25 of these same patients had FF < 4% without FFA. The average increase in FF was 3.9-fold for samples with low FF (2.3-fold overall) and 99.8% had higher FF with FFA. For all abnormalities screened on NIPS, z-scores increased 2.2-fold on average in positive samples and remained unchanged in negative samples, powering an increase in NIPS sensitivity and specificity. CONCLUSION: FFA transforms low-FF samples into high-FF samples. By combining FFA with WGS-based NIPS, a single round of NIPS can provide nearly all women with confident results about the broad range of potential fetal chromosomal abnormalities across the genome.


Assuntos
Ácidos Nucleicos Livres , Teste Pré-Natal não Invasivo , Aneuploidia , Ácidos Nucleicos Livres/genética , Aberrações Cromossômicas , Feminino , Feto , Humanos , Gravidez , Cuidado Pré-Natal , Diagnóstico Pré-Natal
2.
Mol Cell ; 41(5): 589-99, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21362554

RESUMO

The role of Dicer's helicase domain is enigmatic, but in vivo it is required for processing certain endogenous siRNA, but not miRNA. By using Caenorhabditis elegans extracts or purified Drosophila Dicer-2 we compared activities of wild-type enzymes and those containing mutations in the helicase domain. We found the helicase domain was essential for cleaving dsRNA with blunt or 5'-overhanging termini, but not those with 3' overhangs, as found on miRNA precursors. Further, blunt termini, but not 3' overhangs, led to increased siRNAs from internal regions of dsRNA; this activity required ATP and a functional helicase domain. Our data suggest that blunt or 5'-overhanging termini engage Dicer's helicase domain to facilitate accumulation of siRNAs from internal regions of a dsRNA, an activity suited for processing long siRNA precursors of low abundance, but not necessary for the single cleavage required for miRNA processing.


Assuntos
RNA de Cadeia Dupla/genética , Ribonuclease III/química , Ribonuclease III/metabolismo , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Animais , Caenorhabditis elegans , Drosophila , MicroRNAs/metabolismo , Modelos Biológicos , Mutação , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/metabolismo
3.
PLoS Genet ; 12(7): e1006162, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27428049

RESUMO

Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134-144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132-145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA.


Assuntos
DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Alelos , Animais , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Glioblastoma/sangue , Glioblastoma/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Imageamento por Ressonância Magnética , Masculino , Melanoma/genética , Melanoma/metabolismo , Mutação , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Ratos
4.
Mod Pathol ; 27(4): 602-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24051693

RESUMO

The diagnosis of idiopathic inflammatory bowel disease can be challenging. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate protein synthesis through post-transcriptional suppression. This study is to identify new miRNA markers in inflammatory bowel disease, and to examine whether miRNA biomarkers might assist in the diagnosis of inflammatory bowel disease. Illumina small RNA sequencing was performed on non-dysplastic fresh-frozen colonic mucosa samples of the distalmost colectomy tissue from 19 patients with inflammatory bowel disease (10 ulcerative colitis and 9 Crohn disease) and 18 patients with diverticular disease serving as controls. To determine differentially expressed miRNAs, the USeq software package identified 44 miRNAs with altered expression (fold change ≥ 2 and false discovery rate ≤ 0.10) compared with the controls. Among them, a panel of nine miRNAs was aberrantly expressed in both ulcerative colitis and Crohn disease. Validation assays performed using quantitative reverse transcription PCR (qRT-PCR) on additional frozen tissue from ulcerative colitis, Crohn disease, and control groups confirmed specific differential expression in inflammatory bowel disease for miR-31, miR-206, miR-424, and miR-146a (P<0.05). The expression of these four miRNAs was further evaluated on formalin-fixed, paraffin-embedded tissue of the distalmost colectomy mucosa from cohorts of diverticular disease controls (n=29), ulcerative colitis (n=36), Crohn disease (n=26), and the other diseases mimicking inflammatory bowel disease including infectious colitis (n=12) and chronic ischemic colitis (n=19), again confirming increased expression specific to inflammatory bowel disease (P<0.05). In summary, we demonstrate that miR-31, miR-206, miR-424, and miR-146a are novel specific biomarkers of inflammatory bowel disease. Furthermore, miR-31 is universally expressed in both ulcerative colitis and Crohn disease not only in fresh-frozen but also in formalin-fixed, paraffin-embedded tissues.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , MicroRNAs/análise , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Diagnóstico Diferencial , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Índice de Gravidade de Doença , Adulto Jovem
5.
RNA ; 16(5): 893-903, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20354150

RESUMO

Years after the discovery that Dicer is a key enzyme in gene silencing, the role of its helicase domain remains enigmatic. Here we show that this domain is critical for accumulation of certain endogenous small interfering RNAs (endo-siRNAs) in Caenorhabditis elegans. The domain is required for the production of the direct products of Dicer, or primary endo-siRNAs, and consequently affects levels of downstream intermediates, the secondary endo-siRNAs. Consistent with the role of endo-siRNAs in silencing, their loss correlates with an increase in cognate mRNA levels. We find that the helicase domain of Dicer is not necessary for microRNA (miRNA) processing, or RNA interference following exposure to exogenous double-stranded RNA. Comparisons of wild-type and helicase-defective strains using deep-sequencing analyses show that the helicase domain is required by a subset of annotated endo-siRNAs, in particular, those associated with the slightly longer 26-nucleotide small RNA species containing a 5' guanosine.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Deleção de Genes , Genes de Helmintos , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Mutação Puntual , Estrutura Terciária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Homologia de Sequência de Aminoácidos
6.
Biometrics ; 67(4): 1206-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21385162

RESUMO

Next-generation sequencing technologies are poised to revolutionize the field of biomedical research. The increased resolution of these data promise to provide a greater understanding of the molecular processes that control the morphology and behavior of a cell. However, the increased amounts of data require innovative statistical procedures that are powerful while still being computationally feasible. In this article, we present a method for identifying small RNA molecules, called miRNAs, which regulate genes by targeting their mRNAs for degradation or translational repression. In the first step of our modeling procedure, we apply an innovative dynamic linear model that identifies candidate miRNA genes in high-throughput sequencing data. The model is flexible and can accurately identify interesting biological features while accounting for both the read count, read spacing, and sequencing depth. Additionally, miRNA candidates are also processed using a modified Smith-Waterman sequence alignment that scores the regions for potential RNA hairpins, one of the defining features of miRNAs. We illustrate our method on simulated datasets as well as on a small RNA Caenorhabditis elegans dataset from the Illumina sequencing platform. These examples show that our method is highly sensitive for identifying known and novel miRNA genes.


Assuntos
Caenorhabditis elegans/genética , Interpretação Estatística de Dados , Modelos Lineares , MicroRNAs/genética , Reconhecimento Automatizado de Padrão/métodos , Análise de Sequência de RNA/métodos , Animais , Sequência de Bases , Teorema de Bayes , Simulação por Computador , Dados de Sequência Molecular
7.
Microrna ; 5(3): 222-229, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27855604

RESUMO

BACKGROUND: The diagnosis of ulcerative colitis (UC) or Crohn disease (CD) can be challenging given the overlapping features. Knowledge of microRNAs in IBD has expanded recently and supports that microRNAs play an important role. This study aimed to identify novel microRNA biomarkers through comprehensive genome-wide sequencing to distinguish UC from CD. DESIGN: Illumina next generation sequencing was performed on nondysplastic fresh-frozen colonic mucosa of the distal-most colectomy from 19 patients (10 UC and 9 CD) and 18 patients with diverticular disease serving as controls. RESULTS: USeq software package identified 44 microRNAs with altered expression (fold change ≥2 and false discovery rate ≤0.10) compared to controls. Among them, a panel of 11 microRNAs was aberrantly expressed between UC and CD. qRT-PCR validation assays performed on frozen tissue from additional samples of UC (n=20) and CD (n=10) confirmed specific differential expression of miR-147b, miR-194-2, miR-383, miR-615 and miR-1826 (P<0.05). In addition, pathway analysis identified target genes of epithelial adhesion junction, integrin, glycolysis and cell cycle that involve in signaling pathways of TGF-ß, STAT3, IL-8 and PI3L/AKT/mTOR. CONCLUSION: Identification of differentially expressed microRNAs in UC and CD supports the hypothesis that UC and CD are regulated by distinct pathophysiologic mechanisms. MicroRNA panels show promise as diagnostic biomarkers for the subtyping of inflammatory bowel disease.


Assuntos
Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Doença de Crohn/diagnóstico , Doença de Crohn/genética , MicroRNAs/genética , Adulto , Idoso , Sequência de Bases , Estudos de Casos e Controles , Colo/citologia , Colo/patologia , Diagnóstico Diferencial , Feminino , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mucosa Intestinal/citologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
8.
Oncotarget ; 6(30): 28556-72, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26456940

RESUMO

Host-microbial interactions within the mammalian intestines must be properly regulated in order to promote host health and limit disease. Because the microbiota provide constant immunological signals to intestinal tissues, a variety of regulatory mechanisms have evolved to ensure proper immune responses to maintain homeostasis. However, many of the genes that comprise these regulatory pathways, including immune-modulating microRNAs (miRNAs), have not yet been identified or studied in the context of intestinal homeostasis. Here, we investigated the role of microRNA-146a (miR-146a) in regulating intestinal immunity and barrier function and found that this miRNA is expressed in a variety of gut tissues in adult mice. By comparing intestinal gene expression in WT and miR-146a-/- mice, we demonstrate that miR-146a represses a subset of gut barrier and inflammatory genes all within a network of immune-related signaling pathways. We also found that miR-146a restricts the expansion of intestinal T cell populations, including Th17, Tregs, and Tfh cells. GC B cells, Tfh ICOS expression, and the production of luminal IgA were also reduced by miR-146a in the gut. Consistent with an enhanced intestinal barrier, we found that miR-146a-/- mice are resistant to DSS-induced colitis, a model of Ulcerative Colitis (UC), and this correlated with elevated colonic miR-146a expression in human UC patients. Taken together, our data describe a role for miR-146a in constraining intestinal barrier function, a process that alters gut homeostasis and enhances at least some forms of intestinal disease in mice.


Assuntos
Colite/imunologia , Colo/imunologia , Sulfato de Dextrana , Imunidade nas Mucosas , MicroRNAs/imunologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Colite/microbiologia , Colite/patologia , Colite/prevenção & controle , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Tempo
9.
RNA ; 13(7): 1090-102, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17526642

RESUMO

We describe the first microarray analysis of a whole animal containing a mutation in the Dicer gene. We used adult Caenorhabditis elegans and, to distinguish among different roles of Dicer, we also performed microarray analyses of animals with mutations in rde-4 and rde-1, which are involved in silencing by siRNA, but not miRNA. Surprisingly, we find that the X chromosome is greatly enriched for genes regulated by Dicer. Comparison of all three microarray data sets indicates the majority of Dicer-regulated genes are not dependent on RDE-4 or RDE-1, including the X-linked genes. However, all three data sets are enriched in genes important for innate immunity and, specifically, show increased expression of innate immunity genes.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Imunidade Inata/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Animais , Animais Geneticamente Modificados , Deleção de Genes , Regulação da Expressão Gênica , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/genética , Ribonuclease III/fisiologia , Cromossomo X/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA